机器学习之隐马尔可夫模型(HMM)、最大熵马尔可夫模型(MEMM)、条件随机场(CRF)

导读

本次介绍的是三种机器学习模型,分别是隐马尔可夫HMM模型最大熵马尔可夫模型以及条件随机场CRF模型,他们三个是一脉相承的,下面分别介绍

1.隐马尔科夫模型

隐马尔可夫模型(Hidden Markov Model)应用范围较广,主要应用在NLP序列标注问题上。例如分词词性标注POS命名实体识别NER
它是经典的生成模型,学习的是联合概率矩阵p(x,y)p(x,y)p(x,y),它是一个有向图模型,结构如下:
隐马尔可夫模型

模型表示

五元组:(S,V,π\piπ,A,B),其中
S:隐藏状态集合,S = { s1s_{1}s1,s2s_{2}s2,…\dots,sNs_{N}sN},即上图中X一共有几类。
V:观测状态集合,V = { ν1\nu_{1}ν1,ν2\nu_{2}ν2,…\dots,νN\nu_{N}νN},即上图中X一共有几类。
π\piπ:初始状态的概率,π\piπ={ π1\pi_{1}π1,π2\pi_{2}π2,…\dots,πN\pi_{N}πN}; πi\pi_{i}πi = P(X1X_{1}X1 = sis_{i}si)
A:状态转移概率矩阵,A = { aija_{ij}aij}; aija_{ij}aij = P(Xt+1X_{t+1}Xt+1 = sjs_{j}sj|XtX_{t}Xt = sis_{i}si),即由sis_{i}si转移到sjs_{j}sj的概率}
B:符号输出概率,B = { bjkb_{jk}bjk};j ∈\in S,k ∈\in V

序列
状态序列:X=X1,X2,…,XTX = X_{1},X_{2},\dots,X_{T}X=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值