导读
本次介绍的是三种机器学习模型,分别是隐马尔可夫HMM模型、最大熵马尔可夫模型以及条件随机场CRF模型,他们三个是一脉相承的,下面分别介绍
1.隐马尔科夫模型
隐马尔可夫模型(Hidden Markov Model)应用范围较广,主要应用在NLP序列标注问题上。例如分词
、词性标注POS
、命名实体识别NER
等
它是经典的生成模型,学习的是联合概率矩阵p(x,y)p(x,y)p(x,y),它是一个有向图模型,结构如下:
模型表示
五元组:(S,V,π\piπ,A,B),其中
S:隐藏状态集合,S = {
s1s_{1}s1,s2s_{2}s2,…\dots…,sNs_{N}sN},即上图中X一共有几类。
V:观测状态集合,V = {
ν1\nu_{1}ν1,ν2\nu_{2}ν2,…\dots…,νN\nu_{N}νN},即上图中X一共有几类。
π\piπ:初始状态的概率,π\piπ={
π1\pi_{1}π1,π2\pi_{2}π2,…\dots…,πN\pi_{N}πN}; πi\pi_{i}πi = P(X1X_{1}X1 = sis_{i}si)
A:状态转移概率矩阵,A = {
aija_{ij}aij}; aija_{ij}aij = P(Xt+1X_{t+1}Xt+1 = sjs_{j}sj|XtX_{t}Xt = sis_{i}si),即由sis_{i}si转移到sjs_{j}sj的概率}
B:符号输出概率,B = {
bjkb_{jk}bjk};j ∈\in∈ S,k ∈\in∈ V
序列
状态序列:X=X1,X2,…,XTX = X_{1},X_{2},\dots,X_{T}X=