这是一篇价值1500的文章:tensorflow2.0 feature_columns 如何输入到keras 功能性模型(funtional api)
因为一开始这个问题解决不了,找谋宝代做,(只是要个案例而已哦,代码已经写好的那种哦)居然要价1500!还说什么博士,要研究很久,还说解决了很多次同样的问题(为了给广大码农省下宝贵的1500,特意开这个帖子)给钱是不可能给钱的,所以自己谷歌解决了,总共改了就三句
其实关键就在于特征列后面要添加一个输入层,添加后feature_layer_inputs[‘thal’] = tf.keras.Input(shape=(1,), name=‘thal’, dtype=tf.string)
这句把数据变成张量输入到模型里头就能跑通了。然而时序类的还没解决,sequence_numeric_column 这种,有解决案例的朋友可以联系我qq:402868327 互相学习。
另外,不做特征工程的深度学习都是耍流氓
from __future__ import absolute_import, division, print_function
import numpy as np
import pandas as pd
#!pip install tensorflow==2.0.0-alpha0
import tensorflow as tf
from tensorflow import feature_column
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
URL = 'https://storage.googleapis.com/applied-dl/heart.csv'
dataframe = pd.read_csv(URL)
dataframe.head()
train, test = train_test_split(dataframe, test_size=0.2)
train, val = train_test_split(train, test_size=0.2)
print(len(train), 'train examples')
print(len(val), 'va