这是一篇价值1500的文章:tensorflow2.0 feature_columns 如何输入到keras 功能性模型(funtional api)

本文介绍了如何在TensorFlow 2.0中将feature_columns与Keras的Functional API结合使用,特别是如何将特征列转换为模型输入,避免不必要的高昂代做费用。关键在于通过添加一个输入层将特征列转化为张量,以便成功运行模型。作者还提到对于序列数据的问题尚未解决,并邀请对此有经验的人进行交流。
摘要由CSDN通过智能技术生成

这是一篇价值1500的文章:tensorflow2.0 feature_columns 如何输入到keras 功能性模型(funtional api)
因为一开始这个问题解决不了,找谋宝代做,(只是要个案例而已哦,代码已经写好的那种哦)居然要价1500!还说什么博士,要研究很久,还说解决了很多次同样的问题(为了给广大码农省下宝贵的1500,特意开这个帖子)给钱是不可能给钱的,所以自己谷歌解决了,总共改了就三句
其实关键就在于特征列后面要添加一个输入层,添加后feature_layer_inputs[‘thal’] = tf.keras.Input(shape=(1,), name=‘thal’, dtype=tf.string)
这句把数据变成张量输入到模型里头就能跑通了。然而时序类的还没解决,sequence_numeric_column 这种,有解决案例的朋友可以联系我qq:402868327 互相学习。

另外,不做特征工程的深度学习都是耍流氓

from __future__ import absolute_import, division, print_function

import numpy as np
import pandas as pd

#!pip install tensorflow==2.0.0-alpha0
import tensorflow as tf

from tensorflow import feature_column
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split

URL = 'https://storage.googleapis.com/applied-dl/heart.csv'
dataframe = pd.read_csv(URL)
dataframe.head()

train, test = train_test_split(dataframe, test_size=0.2)
train, val = train_test_split(train, test_size=0.2)
print(len(train), 'train examples')
print(len(val), 'va
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值