机器学习常用Metrics的Latex公式(持续更新...)

LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation.

R方:

$ R^2=1-\frac{SSres}{SStot} = 1 - \frac{\sum_{i}(y_i-\widehat{y}_i)^2}{\sum_{i}(y_i-\overline{y}_i)^{2}}$

  • R 2 = 1 − S S r e s S S t o t = 1 − ∑ i ( y i − y ^ i ) 2 ∑ i ( y i − y ‾ i ) 2 R^2=1-\frac{SSres}{SStot} = 1 - \frac{\sum_{i}(y_i-\widehat{y}_i)^2}{\sum_{i}(y_i-\overline{y}_i)^{2}} R2=1SStotSSres=1i(yiyi)2i(yiy i)2

Accuracy

$ Accuracy=\frac{\left|TP \right|+\left|TN\right|}{\left|TP\right|+\left|TN\right|+\left|FP\right|+\left|FN\right|}$

  • A c c u r a c y = ∣ T P ∣ + ∣ T N ∣ ∣ T P ∣ + ∣ T N ∣ + ∣ F P ∣ + ∣ F N ∣ Accuracy=\frac{\left|TP \right|+\left|TN\right|}{\left|TP\right|+\left|TN\right|+\left|FP\right|+\left|FN\right|} Accuracy=TP+TN+FP+FNTP+TN

Precision

$Precision = \frac{\left|TP \right|}{\left|TP \right|+\left|FP\right|}$

  • P r e c i s i o n = ∣ T P ∣ ∣ T P ∣ + ∣ F P ∣ Precision = \frac{\left|TP \right|}{\left|TP \right|+\left|FP\right|} Precision=TP+FPTP

Recall

$Recall =\frac{\left|TP\right|}{\left|TP \right|+\left|FN\right|}$

  • R e c a l l = ∣ T P ∣ ∣ T P ∣ + ∣ F N ∣ Recall =\frac{\left|TP\right|}{\left|TP \right|+\left|FN\right|} Recall=TP+FNTP

F1-score

$F1-score =2\times \frac{Precision\times Recall}{Presion+Recall}$

  • F 1 − s c o r e = 2 × P r e c i s i o n × R e c a l l P r e s i o n + R e c a l l F1-score =2\times \frac{Precision\times Recall}{Presion+Recall} F1score=2×Presion+RecallPrecision×Recall

TPR

$TPR =\frac{\left|TP\right|}{\left|TP \right|+\left|FN\right|}$

  • T P R = ∣ T P ∣ ∣ T P ∣ + ∣ F N ∣ TPR =\frac{\left|TP\right|}{\left|TP \right|+\left|FN\right|} TPR=TP+FNTP

FPR

$FPR =\frac{\left|FP\right|}{\left|TN \right|+\left|FP\right|}$

  • F P R = ∣ F P ∣ ∣ T N ∣ + ∣ F P ∣ FPR =\frac{\left|FP\right|}{\left|TN \right|+\left|FP\right|} FPR=TN+FPFP

AUC

$AUC =\frac{1}{2} \times \Sigma_{i=1}^{m-1}(x'_{i+1}-x'_i)(y'_i+y'_{i+1})$

  • A U C = 1 2 × Σ i = 1 m − 1 ( x i + 1 ′ − x i ′ ) ( y i ′ + y i + 1 ′ ) AUC =\frac{1}{2} \times \Sigma_{i=1}^{m-1}(x'_{i+1}-x'_i)(y'_i+y'_{i+1}) AUC=21×Σi=1m1(xi+1xi)(yi+yi+1)
<think>好的,我现在需要帮用户寻找与机器学习相关的视觉项目案例。用户的问题中提到“机器学习 视觉项目 案例 实现”,所以我需要结合机器学习和计算机视觉的具体应用案例,并确保这些案例有实现的可能性和资源支持。首先,我需要回顾一下用户提供的引用资料,看看里面有没有相关的信息。 引用[1]提到了机器视觉的应用方向、项目流程和学习思路,可能包含一些项目案例的方向。引用[2]则涉及传统机器学习算法和深度学习模型的案例,包括分类、分割、目标检测等,这应该是重点参考的部分。引用[3]列出了5个计算机视觉项目构想,可能包含具体的项目例子。引用[4]是关于Amazon SageMaker部署机器学习模型,可能与项目实现相关。引用[5]是PCA的Python实现,虽然涉及机器学习,但可能不直接关联视觉项目。 接下来,我需要从这些引用中提取有用的信息。首先,引用[2]提到有案例清单,包括分类、分割、目标检测等,使用不同的深度学习框架,适合初学者上手。这应该可以给出几个具体的项目案例。引用[3]中的5个项目构想可能包括物体检测、人脸识别、图像分割、图像生成和动作识别等方向,这些都属于机器学习和视觉结合的应用。 然后,我需要将这些信息整理成结构清晰的回答,按照用户的要求,生成相关问题。同时,确保使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$,但根据问题内容,可能这里数学公式不多,但要注意是否有需要的地方。另外,回答需要引用对应的引用资料,比如在提到案例时引用[2]或[3]。 用户可能需要具体的案例名称、实现方法、使用的算法或框架,以及相关的教程或资源。因此,我需要列举几个典型的项目,比如手数字识别(MNIST)、图像分类(CIFAR-10)、目标检测(YOLO)、图像分割(U-Net)、人脸识别(OpenCV和深度学习)等。每个案例需要简要说明使用的技术、数据来源、实现步骤,并附上可能的代码示例或教程链接。 同时,用户可能希望了解这些项目的学习路径和所需技能,比如需要图像处理知识、编程能力(Python、框架如TensorFlow/PyTorch)、硬件知识等,这部分可以参考引用[1]中的内容。 需要注意的是,回答中要避免使用Markdown格式,但用户给出的示例中使用了代码块,所以可能需要保留代码块的结构,但根据系统级指令,用户可见层可能需要使用中文和清晰的结构。另外,生成的相关问题应该围绕机器学习视觉项目的实现、优化、应用场景等展开。 最后,检查是否有遗漏的信息,确保每个提到的案例都有对应的引用支持,比如引用[2]和[3],并且在回答末尾正确添加引用标识。同时,确保语言流畅,结构清晰,分点说明,帮助用户逐步了解如何实现这些视觉项目。</think>### 机器学习视觉项目案例及实现方法 以下是结合机器学习和计算机视觉的典型项目案例,涵盖从基础到进阶的实现方向,并提供技术要点和参考资源。 --- #### 1. **手数字识别(MNIST分类)** - **技术核心**:使用卷积神经网络(CNN)对MNIST数据集进行分类。 - **实现步骤**: 1. 加载MNIST数据集(包含60,000张训练图像和10,000张测试图像)。 2. 构建CNN模型,包含卷积层、池化层和全连接层。 3. 训练模型并评估准确率。 - **代码片段**: ```python import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)), tf.keras.layers.MaxPooling2D((2,2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) ``` **参考资源**:TensorFlow官方MNIST教程[^2]。 --- #### 2. **图像分类(CIFAR-10数据集)** - **技术核心**:使用预训练模型(如ResNet、VGG)进行迁移学习。 - **实现步骤**: 1. 加载CIFAR-10数据集(10类物体图像)。 2. 使用预训练模型(如ResNet50)提取特征。 3. 在自定义分类层上微调模型。 - **优化方法**:数据增强(旋转、翻转)提升泛化能力[^2]。 --- #### 3. **目标检测(YOLO实现)** - **技术核心**:利用YOLO(You Only Look Once)算法实时检测图像中的物体。 - **实现步骤**: 1. 使用COCO或PASCAL VOC数据集标注目标边界框。 2. 构建YOLO模型结构(Darknet框架或PyTorch实现)。 3. 训练模型并部署到视频流中。 - **参考案例**:YOLOv5开源项目(GitHub)[^3]。 --- #### 4. **图像分割(U-Net医学影像分割)** - **技术核心**:使用U-Net模型对医学影像(如肺部CT)进行像素级分割。 - **实现步骤**: 1. 加载医学影像数据集(如ISBI细胞分割挑战赛数据)。 2. 构建U-Net模型,包含编码器和解码器结构。 3. 计算Dice系数评估分割精度。 - **代码库推荐**:Kaggle上的U-Net示例。 --- #### 5. **人脸识别(OpenCV + 深度学习)** - **技术核心**:结合Haar级联检测器和FaceNet模型实现人脸验证。 - **实现步骤**: 1. 使用OpenCV的Haar级联检测器定位人脸。 2. 通过FaceNet模型提取人脸特征向量。 3. 计算特征相似度进行身份验证。 - **参考资源**:FaceNet论文及OpenCV官方文档。 --- ### 技术能力要求 - **图像处理基础**:理解滤波、边缘检测、直方图均衡化等操作[^1]。 - **编程能力**:熟悉Python及框架(TensorFlow/PyTorch)。 - **部署经验**:了解云服务(如Amazon SageMaker)部署模型的方法[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值