图着色(回溯+剪枝)

图着色,第一行输入三个数,n,m,k,n为顶点数,m为颜色数,k为边数,n为行数,i到j有边,n小于等于20,输出各点颜色号,一行输出,空格分割,没有就输出NO

#include<cstdio>
#include<algorithm>
using namespace std;
int m,n,k;
int map[105][105];
int color[105];
int ans;
//对于每个点,枚举它可能被染的颜色。如果与它相连的点颜色和它相同,那么就换下一个颜色;如果哪个颜色也不能选,那就回到上一个点换颜色(回溯),当确定完最后一个点的颜色后,这就是一个可行解,将答案增加1。
void a(int p)
{
//遍历图上任意点,因为没有确定编号n以后的点的颜色。所以到n-1就相对于把点全遍历一遍
    if(p == n+1)
    {
        ans++;
        return;
    }
    else
    {
        for(int i=1;i<=m;i++)
        {
            int boo = false;
            for(int j=1;j<=p;j++)
            {
                if(map[p][j] == 1 && color[j] == i)
                {
                    boo = true;
                    break;
                }
            }
            if(boo == true) continue;
            color[p] = i;
            a(p+1);
            color[p] = 0;
        }
    }
}
int main()
{
    scanf("%d%d%d",&n,&k,&m);
    for(int i=1;i<=k;i++)
    {
        int d1,d2;
        scanf("%d%d",&d1,&d2);
        map[d1][d2] = 1;
        map[d2][d1] = 1;
    }
    a(1);
    if(ans != 0)
    printf("%d",ans);
    else
        printf("NO");
    return 0;
}

在C语言中,着色问题是论中的一个问题,特别是涉及到有向或无向的顶点着色问题,比如经典的四色定理,即任何简单平面都能用不多于四种颜色进行着色,使得相邻的顶点颜色不同。回溯法(Backtracking)是一种常用的方法来解决这类组合优化问题,包括着色问题。 回溯算法步骤大致如下: 1. 初始化:选择一个未被着色的顶点,将其设为当前颜色(如第1种颜色)。 2. 剪枝:检查当前节点的邻居是否与当前颜色冲突。如果冲突,尝试下一个颜色;如果所有颜色都试过且都冲突,就回溯到上一个节点并改变其颜色。 3. 递归:对当前节点的未访问邻居重复以上步骤,直到所有的顶点都被着色或者无法找到一种可行的着色方案为止。 4. 结束条件:当所有顶点都被正确着色且没有冲突时,找到了一个有效的着色方案。 对于具体实现,你需要创建一个递归函数,用于尝试给每个顶点着色,同时维护一个颜色列表和一个已访问列表。在递归过程中,你可以使用一个栈来存储待检查的状态,回溯时从栈中弹出状态进行修改。 回溯法的关键在于剪枝策略,也就是如何有效地判断当前状态下是否存在解决方案。对于顶点着色问题,一种常见的剪枝策略是使用邻接矩阵或邻接表来快速查找冲突。 如果你想了解如何用C语言编写具体的回溯算法来解决着色问题,我可以提供一个简化版的伪代码示例,但完整的代码实现会相当复杂,并且会依赖于具体的数据结构和库。是否有兴趣看一个简单的代码框架?如果有,请告诉我,或者我可以直接解释算法的原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Αиcíеиτеǎг

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值