Seq2SeqTrainer与Trainer的区别

122 篇文章 ¥59.90 ¥99.00

`Seq2SeqTrainer`和`Trainer`是Hugging Face Transformers库中用于训练模型的两个类。它们之间的主要区别在于它们针对的任务类型和模型架构的不同。

1. 任务类型:
- `Trainer`类适用于大多数常见的单输入单输出(single-input, single-output)任务,例如分类、回归和文本生成等。它可以用于训练和评估各种类型的模型,如BERT、GPT和RoBERTa等。

- `Seq2SeqTrainer`类则专门用于序列到序列(sequence-to-sequence)任务,如机器翻译、摘要生成和对话系统等。它支持使用编码器-解码器(encoder-decoder)架构的模型,例如Transformer和BART等。

2. 数据处理:
- `Trainer`类假定输入数据是单个输入和单个输出,因此它期望输入数据以特定的格式(例如PyTorch的`DataLoader`)提供。

- `Seq2SeqTrainer`类则处理序列到序列任务,因此它期望输入数据以一对源序列和目标序列的形式提供。这可以是一个`Dataset`对象或任何可迭代的数据结构,每个样本都包含一个源序列和一个目标序列。

3. 训练过程:
- `Trai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

andeyeluguo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值