数智前沿 | 全域隐私计算

全域隐私计算结合加密技术和跨学科知识,保障数据在共享时的隐私和安全,避免数据泄露。这种技术已应用于金融风控、互联网营销、电子政务和智慧医疗等领域,促进数据驱动的业务发展,同时应对数据安全和隐私保护的挑战。然而,性能、互通性和安全共识等问题仍待解决,以实现规模化发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据时代,数据已经成为推动整个世界发展的生产要素之一。随着《数据安全法》和《个人信息保护法》的正式实施,国家和个人越来越重视数据安全和个人隐私保护,如何兼顾数据的应用和安全保护成为了新的社会问题。全域隐私计算的出现与兴起,推动了数据安全和数据合规分享等技术路径的成熟,有效解决了数据应用和数据安全保护两难的问题,在保护数据隐私安全的前提下,最大限度地应用数据。

一、什么是全域隐私计算

全域隐私计算是集密码学、数据科学、计算机工程、安全硬件、人工智能等众多领域的跨学科技术体系。它是一种由两个或多个参与方共同计算的技术和系统,提供了一种在分布式环境中安全共享数据的方法,能够保护数据的隐私和安全,使数据仅在参与者之间共享,而不会泄露给任何其他第三方。

二、原理与优势

全域隐私计算的主要原理是使用加密技术来对数据进行加密,并将加密后的数据分发给参与者,使参与者无法访问到其他参与者的数据。此外,全域隐私计算还利用了一些其他技术,如数据分解、秘密共享和混淆,来保护数据的隐私和安全,使得数据“可用不可见”。

全域隐私计算的优势:

1、全域隐私计算能够在无需参与者建立信任关系的情况下,安全地共享数据。这种技术不仅可以用于企业之间的数据共享,还可以用于跨国组织之间的数据共享,改善企业和组织之间的合作关系。

2、全域隐私计算可以用于提高网络安全性,保护用户的隐私。它可以帮助网络服务提供商有效阻止黑客攻击,防止数据泄露和窃取。

三、应用场景

全域隐私计算的技术价值日益凸显,在政策环境的辅助下,相关研究逐渐从技术原理转向应用实践,其主要技术流派包括可信执行环境、多方安全计算、查分隐私技术、联邦学习。当前应用场景主要集中在以数据驱动为主的金融、互联网、医疗、政务等领域。例如:

1、在金融风控场景中

隐私计算技术可以实现跨机构间数据价值的联合挖掘,分析客户综合情况,降低欺诈与合规风险,提升综合风控能力;还被用于在各方原始特征不出域的前提下建立风控模型,形成对业务的多维理解,提高风控质量。

2、在互联网联合营销场景

隐私计算可以帮助机构在不输出原始数据的情况下共享和交换密文数据,进行营销模型计算,并根据建模结果制定营销策略,实现对客户的精准营销、获客引流。

3、在电子政务场景

隐私计算技术可实现被保护数据在不离开本地节点的基础上,构建政务公共数据密文的开放共享交换平台,实现政务数据的开放共享而不公开,充分发挥数据融合的价值。

4、在智慧医疗场景

隐私计算技术可实现数据隐私保护下医学数据安全性的统计分析和医学模拟仿真预测,并进行跨医疗机构的临床辅助决策、基因分析、医学研究等。

四、总结

目前,全域隐私计算技术正处于快速迭代和发展阶段,但在巨大的市场潜力背后,其在隐私安全计算、性能和数据的互通共享方面仍存在挑战,其中算法协议安全、开发应用安全、安全共识、密文计算性能瓶颈、数据孤岛等问题尤为突出。在后续的发展中,如何打破共享壁垒,成为全域隐私计算技术规模化发展的关键。

更多精彩关注:【鹏信科技】微信公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值