[DL]3.基于CNN的手写数字识别

本文重点介绍如何在TensorFlow中利用CNN进行手写数字识别,通过训练得到约99.1%的识别准确率。
摘要由CSDN通过智能技术生成

CNN的原理这里就不介绍了,如果想要了解详细的原理可以参考链接

本文注重的是CNN在TensorFlow中是如何实现的。CNN可以用图片表示为(仅供想象用,但不是本文使用的模型的图片表示):

下面结合代码具体解释。

from tensorflow.examples.tutorials.mnist import input_data



print('数据加载...')
mnist=input_data.read_data_sets('./data/mnist',one_hot=True)
# 可以看到返回的是Datasets类型,包含了训练集、验证集、测试集
#return base.Datasets(train=train, validation=validation, test=test)

print('图片表示示例:')
print(mnist[0].images[0])
print('标签表示示例:')
print(mnist[0].labels[0])

img_count_train=len(mnist[0].images)
img_array_train=len(mnist[0].images[0])
img_label_train=len(mnist[0].labels[0])
print('训练集有%s张图片,每张图片表示为%s维数组,标签以one-hot方式编码为%s维数组。'%(img_count_train,img_array_train,img_label_train))


img_count_validation=len(mnist[1].images)
img_array_validation=len(mnist[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值