最新扣子(Coze)案例教程:AI制作食物热量分析器,从照片到营养报告,轻松构建营养分析工具!手把手教学,完全免费教程

👨‍💻 你是否好奇每天吃的食物到底有多少热量?或者想知道一顿饭的营养成分是否均衡?越来越多的人开始关注饮食的热量和营养,借助最新大模型的视觉理解技术,我们可以轻松解决这个问题!

今天斜杠君就为大家带来这篇详细的教学,教你搭建一个基于AI的智能食物热量分析工具。无论是健康爱好者,还是对AI技术感兴趣的朋友,都可以通过本教程掌握这项实用的技能。

智能体作用:用户上传食物照片,工具自动识别食物种类,并计算出总热量和营养成分。

我们先来预览一下生成的分析报告:

图片

🎥 本期视频教程已上传至知识星球,有更详细的教学文档(包括完整的代码和提示词),加入方法见文章结尾,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

🤹 接下来,话不多说,斜杠君用最简单的方式教给大家。💖大家可以关注收藏,以免之后找不到,而且也不会错过我后面的教程。

一、创建应用

首先新建一个应用。

图片

填写名字和描述

图片

二、业务逻辑

1、开始节点

开始参数接收用户上传的一张食物图片。

图片

2、大模型节点

使用大模型的视觉理解功能,对用户上传的图片进行分析:

图片

3、结束节点

对大模型总结的内容进行输出。

图片

三、用户界面

1、上传组件

上传组件用来接收用户上传的食物照片。

组件配置如图所示:

图片

2、按钮组件

按钮组件用来触发业务逻辑中「工作流」的执行。

这里我们要配置按钮的属性和事件。

属性配置如图所示:

图片

事件配置如图所示:

图片

四、效果演示

首先上传一张食物图片,然后预览一下生成后的报告效果:

图片

到这里整体的流程就搭建完了,大家快动手搭建一下试试吧~ 

🎥 本期视频教程已上传至知识星球,有更详细的教学文档(包括完整的代码和提示词),欢迎大家加入和斜杠君学习,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

原文链接_联系我:最新扣子(Coze)案例教程:照片BGM生成器,让每一张照片都有专属音乐!手把手教学,完全免费教程

### 使用 Coze 进行数据分析的方法 #### 数据分析工作流构建 在使用 Coze 平台进行数据分析时,可以通过组合不同的节点来创建高效的数据处理工作流。具体来说,可以利用 LLM 大语言模型节点、Code 代码节点以及 Knowledge 知识库节点等基础组件[^2]。 对于初步的数据探索与预处理阶段,推荐先采用 Code 代码节点编写 Python 或 R 脚本来加载数据集并对原始数据执行清洗、转换等操作: ```python import pandas as pd # 加载CSV文件作为DataFrame对象 data = pd.read_csv('path/to/your/dataset.csv') # 显示前几行记录以便快速查看数据结构 print(data.head()) ``` 当完成基本准备后,则可引入 LLM 大语言模型节点辅助更复杂的任务,比如自然语言查询解析或是基于文本的内容分类等工作。这类高级特性有助于简化某些特定场景下的编程负担,并加速原型验证过程[^3]。 另外,在整个分析过程中,Knowledge 知识库节点能够发挥重要作用——它允许用户定义私有的领域专业知识图谱或文档集合,从而支持更加精准的信息检索服务。这对于那些依赖于行业背景知识的任务尤为重要。 最后但同样重要的是 Condition 条件判断节点的应用,该工具可以帮助设定自动化决策路径,依据不同业务逻辑实现动态分流控制,进而提升整体解决方案灵活性和适应能力。 综上所述,借助上述提到的各种强大功能模块,Coze 提供了一个全面而灵活的环境让用户轻松开展各类数据分析活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值