算法进阶之回溯算法详解

回溯算法详解

解决一个回溯问题,实际上就是一个决策树的遍历过程
需要思考 3 个问题:

1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。

回溯算法的框架:

result = []
def backtrack(路径, 选择列表):
    if 满足结束条件:
        result.add(路径)
        return

    for 选择 in 选择列表:
        做选择
        backtrack(路径, 选择列表)
        撤销选择

其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」

全排列问题

List<List<Integer>> res = new LinkedList<>();

/* 主函数,输入一组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
    // 记录「路径」
    LinkedList<Integer> track = new LinkedList<>();
    backtrack(nums, track);
    return res;
}

// 路径:记录在 track 中
// 选择列表:nums 中不存在于 track 的那些元素
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(int[] nums, LinkedList<Integer> track) {
    // 触发结束条件
    if (track.size() == nums.length) {
        res.add(new LinkedList(track));
        return;
    }

    for (int i = 0; i < nums.length; i++) {
        // 排除不合法的选择
        if (track.contains(nums[i]))
            continue;
        // 做选择
        track.add(nums[i]);
        // 进入下一层决策树
        backtrack(nums, track);
        // 取消选择
        track.removeLast();
    }
}

N 皇后问题

给你一个 N×N 的棋盘,让你放置 N 个皇后,使得它们不能互相攻击。
PS:皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位。

这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。

vector<vector<string>> res;

/* 输入棋盘边长 n,返回所有合法的放置 */
vector<vector<string>> solveNQueens(int n) {
    // '.' 表示空,'Q' 表示皇后,初始化空棋盘。
    vector<string> board(n, string(n, '.'));
    backtrack(board, 0);
    return res;
}

// 路径:board 中小于 row 的那些行都已经成功放置了皇后
// 选择列表:第 row 行的所有列都是放置皇后的选择
// 结束条件:row 超过 board 的最后一行
void backtrack(vector<string>& board, int row) {
    // 触发结束条件
    if (row == board.size()) {
        res.push_back(board);
        return;
    }

    int n = board[row].size();
    for (int col = 0; col < n; col++) {
        // 排除不合法选择
        if (!isValid(board, row, col)) 
            continue;
        // 做选择
        board[row][col] = 'Q';
        // 进入下一行决策
        backtrack(board, row + 1);
        // 撤销选择
        board[row][col] = '.';
    }
}

这部分主要代码,其实跟全排列问题差不多,isValid 函数的实现也很简单:

/* 是否可以在 board[row][col] 放置皇后? */
bool isValid(vector<string>& board, int row, int col) {
    int n = board.size();
    // 检查列是否有皇后互相冲突
    for (int i = 0; i < n; i++) {
        if (board[i][col] == 'Q')
            return false;
    }
    // 检查右上方是否有皇后互相冲突
    for (int i = row - 1, j = col + 1; 
            i >= 0 && j < n; i--, j++) {
        if (board[i][j] == 'Q')
            return false;
    }
    // 检查左上方是否有皇后互相冲突
    for (int i = row - 1, j = col - 1;
            i >= 0 && j >= 0; i--, j--) {
        if (board[i][j] == 'Q')
            return false;
    }
    return true;
}

参考
回溯算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值