leetcode 886. 可能的二分法
给定一组 N 人(编号为 1, 2, …, N), 我们想把每个人分进任意大小的两组。
每个人都可能不喜欢其他人,那么他们不应该属于同一组。
形式上,如果 dislikes[i] = [a, b],表示不允许将编号为 a 和 b 的人归入同一组。
当可以用这种方法将每个人分进两组时,返回 true;否则返回 false。
示例 1:
输入:N = 4, dislikes = [[1,2],[1,3],[2,4]]
输出:true
解释:group1 [1,4], group2 [2,3]
示例 2:
输入:N = 3, dislikes = [[1,2],[1,3],[2,3]]
输出:false
示例 3:
输入:N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
输出:false
提示:
1 <= N <= 2000
0 <= dislikes.length <= 10000
dislikes[i].length == 2
1 <= dislikes[i][j] <= N
dislikes[i][0] < dislikes[i][1]
对于 dislikes[i] == dislikes[j] 不存在 i != j
思路
二分图就是一幅拥有特殊性质的图:
能够用两种颜色为所有顶点着色,使得任何一条边的两个顶点颜色不同。
如果我们把每一个人看做是一个顶点,边代表讨厌;相互讨厌的两个人之间连接一条边,就可以形成一幅图.根据二分图的定义,如果这幅图是一个二分图,就说明这些人可以被分为两组,否则的话就不行.
具体的,首先根据dislikes构建一个图,用来存储不喜欢人之间的邻接表
然后对顶点进行bfs广度优先遍历,首先为第一个顶点着色为0,然后将他的邻居节点着色为1,接着将邻居节点的邻居节点着色为0
着色过程中,判断是否会出现着色冲突,如果出现着色冲突,那么就无法构成二分图,也就无法分为两组.
class Solution:
def possibleBipartition(self, N: int, dislikes: List[List[int]]) -> bool:
from collections import defaultdict
graph = defaultdict(list)
# 构建图,使用邻接表的形式
for p1, p2 in dislikes:
graph[p1].append(p2)
graph[p2].append(p1)
# 记录着色
colors = {}
def bfs(node, color=0):
if node in colors: # 如果已经着色,判断颜色是否正确
return colors[node] == color
colors[node] = color # 还未着色,将其着色
for neibor in graph[node]: # 遍历其所有邻居
if not bfs(neibor, color^1): # 如果着色失败,返回false
return False
return True # 着色成功,返回true
for node in range(1, N + 1): # 遍历所有节点
if node not in colors: # 还未着色
if not bfs(node): # 无法正确着色
return False
return True # 所有节点着色成功,返回true