滤波算法:经典卡尔曼滤波

本文介绍了卡尔曼滤波的基本原理和算法,包括预测和修正步骤,展示了如何利用该滤波算法进行信号去噪。在移动开发中,卡尔曼滤波因其低计算量和优秀的滤波效果而被广泛应用。实验证明,它能有效去除高斯噪声和非高斯噪声,但在系统模型不精确时需通过增加采样频率来改善滤波效果。
摘要由CSDN通过智能技术生成

这两天学习了一些卡尔曼滤波算法的相关知识。相比其它的滤波算法,卡尔曼滤波在对计算量需求非常之低,同时又能达到相当不错的滤波结果。

1. 算法原理

网上看到一篇文章http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/对卡尔曼滤波讲解的十分形象透彻,国内也有这篇文章的中文翻译版,链接:https://blog.csdn.net/u010720661/article/details/63253509,这里还是先简单的介绍一下。

卡尔曼滤波实质上就是基于观测值以及估计值二者的数据对真实值进行估计的过程。预测步骤如图1所示:

 

图1 卡尔曼滤波原理流程图

 

假设我们能够得到被测物体的位置和速度的测量值,在已知上一时刻的最优估计值以及它的协方差矩阵的条件下(初始值可以随意取,但协方差矩阵应为非0矩阵),则有,即:

                                             (1)

而此时,

                   (2)

如果我们加入额外的控制量,比如加速度,此时,则此时:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值