题目大意:一个软件有s个子系统, 会产生n种bug ,Ivan一天找一个bug,这个bug属于某种类别,出现在某个子系统中,求找到全部 n种bug,且每个子系统中都找到bug的天数的期望。已知:每个bug出现在某个子系统的概率为1/ s , 属于某种类别的概率为1/n。
解题思路:用dp[i][j] 表示已找到i种bug,且属于j个子系统 ,要达到所求还需要的天数的期望,显然:dp[n][s] = 0, dp[0][0]即为所求。
期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i][j] = 1 + p1 * dp[i][j] + p2 * dp[i][j+1] + p3 * dp[i+1][j] + p4 * dp[i+1][j+1] ;
其中
p1 = i /n * j/s = (i *j) / (n *s);
p2 = (i * (s-j)) / (n *s);
p3 = ((n-i) * j) / (n *s);
p4 = ((n-i) * (s-j)) / (n *s);
整理得: dp[i][j] = ( n *s + i * (s-j) * dp[i][j+1] + (n-i) * j * dp[i+1][j] + (n-i) * (s-j) * dp[i+1][j+1] ) / (n *s - i *j);
代码实现:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define N 1010
double dp[N][N];
int main()
{
int n, s;
while(~scanf("%d %d", &n, &s))
{
dp[n][s] = 0;
for(int i = n; i >= 0; i --)
{
for(int j = s; j >= 0 ; j --)
{
if(j==s && i==n) continue;
dp[i][j] = (n * s +(i * j * 1.0 )*dp[i][j] + ((n-i) * j * 1.0) * dp[i+1][j]
+ (i * (s-j) *1.0) * dp[i][j+1] + ((n-i) * (s-j)* 1.0) * dp[i+1][j+1] ) / (n *s - i *j);
}
}
printf("%.4lf\n", dp[0][0]);
}
return 0;
}