POJ 2096 Collecting Bugs

题目大意:一个软件有s个子系统, 会产生n种bug ,Ivan一天找一个bug,这个bug属于某种类别,出现在某个子系统中,求找到全部 n种bug,且每个子系统中都找到bug的天数的期望。已知:每个bug出现在某个子系统的概率为1/ s , 属于某种类别的概率为1/n。


解题思路:用dp[i][j] 表示已找到i种bug,且属于j个子系统 ,要达到所求还需要的天数的期望,显然:dp[n][s] = 0, dp[0][0]即为所求。

期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...  

所以:

dp[i][j] =  1 + p1 * dp[i][j] + p2 * dp[i][j+1] + p3 * dp[i+1][j] + p4 * dp[i+1][j+1] ;

其中 

p1 = i /n * j/s  = (i *j) / (n *s);     

p2 = (i * (s-j)) / (n *s); 

p3 = ((n-i) * j) / (n *s);  

p4 = ((n-i) * (s-j)) / (n *s);

 整理得: dp[i][j]  = (  n *s + i * (s-j) * dp[i][j+1] + (n-i) * j  * dp[i+1][j] + (n-i) * (s-j) * dp[i+1][j+1]  ) / (n *s -  i *j);


代码实现:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define  N  1010
double dp[N][N];
int  main()
{
     int n, s;
     while(~scanf("%d %d", &n, &s))
     {
          dp[n][s] = 0;
          for(int i = n; i >= 0; i --)
          {
                  for(int j = s; j >= 0 ; j --)
                  {
                          if(j==s && i==n) continue;
                          dp[i][j] = (n * s +(i * j * 1.0 )*dp[i][j] +  ((n-i) * j * 1.0) * dp[i+1][j]
                          + (i * (s-j) *1.0) * dp[i][j+1] + ((n-i) * (s-j)* 1.0) * dp[i+1][j+1] ) / (n *s - i *j);
                  }
          }
          printf("%.4lf\n", dp[0][0]);
     }

     return 0;
}




  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值