平方探测法处理散列函数冲突

本文深入解析了平方探测法这一高效处理散列表冲突的方法,通过具体实例展示了如何利用平方探测法解决冲突,避免‘堆积’问题,并详细记录了键值插入过程及比较次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  平方探测法是一种较好的处理冲突的方法,可以避免出现“堆积”问题,它的缺点是不能探测到散列表上的所有单元,但至少能探测到一半单元。下面通过一个例子来理解:

  设Hash函数为 H( key ) = key mod 7,哈希表的地址空间为0,1,...,10,开始时哈希表为空,用平方探测法解决冲突,画出依次插入键值9,14,10,30,56,28后的哈希表和比较次数。

  1.插入键值9,9 mod 7 = 2 ,无冲突,插入,比较一次;

  

  2.插入键值14,14 mod 7 = 0,无冲突,插入,比较一次;

  

  3.插入键值10,10 mod 7 = 3,无冲突,插入,比较一次;

  

  4.插入键值30,30 mod 7 = 2,冲突,2+12=3,有冲突,2-12=1,无冲突插入,比较3次;

   

  5.插入键值56,56 mod 7 = 7,无冲突,插入,比较一次;

   

  6.插入键值28,28 mod 7 = 0,冲突,0+12=1,有冲突,0-12=-1,此时插入到地址10,如果等于-2就插入到地址9,比较次数3次。此时插入全部完成。

   

 

   

转载于:https://www.cnblogs.com/Mhang/p/9937565.html

### 关于整型关键字使用平方探测法进行哈希处理 #### 定义原理 散列表是一种基于键值映射的数据结构,允许快速查找、插入和删除操作。对于给定的无重复正整数序列,通过特定的散列函数计算其在表中的位置,并利用平方探测法解决可能发生的冲突。 #### 散列函数设计 所使用的散列函数为 \( H(\text{key})=\text{key}\% \text{TSize} \),这里 TSize 表示散列表的实际长度[^1]。当遇到冲突时,则按照公式 \( H'(\text{Key})=H(\text{Key})+i^2 \) 进行探查,直到找到空闲的位置为止,这里的 i 代表尝试次数,从 0 开始递增[^2]。 #### 处理非素数表长的情况 需要注意的是,在某些情况下,为了提高性能并减少碰撞概率,建议使散列表的大小成为质数。因此,如果初始设定的 TSize 不是质数的话,应该将其调整到下一个更大的质数上[^3]。 #### Python 实现代码示例 下面是一个简单的Python程序实现了上述逻辑: ```python def next_prime(n): """Find the smallest prime number greater than n.""" def is_prime(x): if x <= 1: return False for j in range(2, int(x ** 0.5) + 1): if x % j == 0: return False return True while not is_prime(n): n += 1 return n class HashTable: def __init__(self, size): self.size = next_prime(size) self.table = [-1] * self.size def insert(self, key): index = hash_func(key, self.size) attempt = 0 original_index = index while self.table[index] != -1 and self.table[index] != 'DELETED': attempt += 1 offset = attempt ** 2 index = (original_index + offset) % self.size self.table[index] = key return index def hash_func(key, table_size): return key % table_size ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值