Median of Two Sorted Arrays

思路很简明,在两个有序数组里找到中间那位,如果有两个则求个均值返回。

问题分析:常见的是在一个有序数组里找到中位数,在两个有序数字里找到中位数,可以考虑现在其中一个将k分为p+q=k,

这样每次可以丢掉很大一部分。

那么p和q的取值很有讲究

方法一:随机选取

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int len1=nums1.length,len2=nums2.length;
        int len=len1+len2;
        if((len&1)==1)
            return findKth(nums1,0,len1-1,nums2,0,len2-1,(len+1)/2);
        else
            return (findKth(nums1,0,len1-1,nums2,0,len2-1,len/2)+findKth(nums1,0,len1-1,nums2,0,len2-1,len/2+1))/2.0;
    }
    double findKth(int nums1[],int s1,int e1,int nums2[],int s2,int e2,int k){
        if(e1<s1)
            return nums2[k-1+s2];
        if(e2<s2)
            return nums1[k-1+s1];
        else if(e1-s1>e2-s2)
            return findKth(nums2,s2,e2,nums1,s1,e1,k);
        else if(k==1)
            return Math.min(nums1[s1],nums2[s2]);
        int p=1+(int)Math.random()*(Math.min(e1-s1,k-1));
        int q=k-p;
        if(nums1[s1+p-1]<nums2[s2+q-1]){
            return findKth(nums1,s1+p,e1,nums2,s2,e2,k-p);
        }else if(nums1[s1+p-1]>nums2[s2+q-1]){
            return findKth(nums1,s1,e1,nums2,s2+q,e2,k-q);
        }else{
            return nums1[s1+p-1];
        }
    }
}

方法二选取固定值,这个固定值是指每次选择nums1最后一个满足k的位置

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int len1=nums1.length,len2=nums2.length;
        int len=len1+len2;
        if((len&1)==1)
            return findKth(nums1,0,len1-1,nums2,0,len2-1,(len+1)/2);
        else
            return (findKth(nums1,0,len1-1,nums2,0,len2-1,len/2)+findKth(nums1,0,len1-1,nums2,0,len2-1,len/2+1))/2.0;
    }
    double findKth(int nums1[],int s1,int e1,int nums2[],int s2,int e2,int k){
        if(e1<s1)
            return nums2[k-1+s2];
        if(e2<s2)
            return nums1[k-1+s1];
        else if(e1-s1>e2-s2)
            return findKth(nums2,s2,e2,nums1,s1,e1,k);
        else if(k==1)
            return Math.min(nums1[s1],nums2[s2]);
        int p=e1-s1+1;
        if(p>=k)
            p=1;
        int q=k-p;
        if(nums1[s1+p-1]<nums2[s2+q-1]){
            return findKth(nums1,s1+p,e1,nums2,s2,e2,k-p);
        }else if(nums1[s1+p-1]>nums2[s2+q-1]){
            return findKth(nums1,s1,e1,nums2,s2+q,e2,k-q);
        }else{
            return nums1[s1+p-1];
        }
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值