组合数学刷题姬

 

例题1.洛谷P4491  ,给NMS<=1e7,NTT

题意:N个位置,每个位置可以染为M种颜色,若位置恰有K种颜色出现S次,则获得愉悦度WK

问所有愉悦度之和

https://blog.csdn.net/animalcoder/article/details/81267633

 

例题2 hdu5730  CDQ+NTT+DP

题意:已知连续i(1<=i<=n)个贝壳组合成一段项链的方案数a[i],求组合成
包含n个贝壳的项链的总方案数

  • dp[i]表示组合成包含i个贝壳的项链的总方案数
  • 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i)

https://blog.csdn.net/animalcoder/article/details/81268201

 

例题3 wannafly20D  si之和N,M<=1e5,选出来无需排列

题意:M个Q群,每个群有si个人,每个群至少选一个,选K个人的方案数

思路:每个群挑选的生成函数为\small G(i)=\sum_{i=0}^{si }\binom{si}{i}x^{i},答案就是m个G(i)的生成函数之积后

\small x^{K}的系数   生成函数之积NTT,多个相乘,加个分治,

此题需要用邻接表。。原来的板子不适用了

https://blog.csdn.net/animalcoder/article/details/81272169

 

例题4.uvalive1140   n,m<=1e9,k<=1e6

题意:n个位置染m种颜色,选K种颜色,要求相邻位置不同颜色,且K种颜色至少都用一次

思路:先选K种颜色,然后如果不管至少都用一次的限制,全体=\small k*(k-1)^{n-1}

全体由恰有1种颜色至少用一次+恰有2种颜色至少用一次+..恰有K种颜色至少用一次

\small k*(k-1)^{n-1}=\sum_{i=2}^{k}f_{k}\binom{k}{i}反演\small ans=\binom{m}{k}f_{k}=\binom{m}{k}\sum_{i=2}^{k}-1^{i+k}\binom{k}{i}i*(i-1)^{n-1}

有个黑科技叫二项式反演(容斥)

学习博客:http://blog.miskcoo.com/2015/12/inversion-magic-binomial-inversion

\small \binom{m}{k}=\binom{m}{k-1}*\frac{m-k+1}{k},用这个预处理cmk跟cki

代码:https://blog.csdn.net/animalcoder/article/details/81277257

 

例题5. m个不同盒子,有a个相同红球,b个相同蓝球,可以空盒,球可以不放完,问方案数

ab独立,分开算,n个相同球放m个不同盒子可以空盒模型:\small \binom{n+m-1}{n}插板法

由于可以不放完,剩下的球都在一个虚盒里\small ans=\binom{a+n}{n}\binom{b+n}{n}

 

例题6.牛客网多校第一场B   组合DP

题意:n个点,求所有点度为2,即每个点都属于一个环的方案数

设ans=DP(n),DP(n)中第n个点,要么与n-1个点的其中一个相连成为2-环,剩余n-2个点就是dp(n-2),要么与n-1个点的其中若干个点形成新环,DP(n)=n-1*DP(n-2)+???

与n-1个点成新环,成的新环大小为k:n-1个点选k个出来与n点成环*排列数

\small ???=\sum_{k=3}^{n-1}\binom{n-1}{k}\frac{k!}{2}*dp[n-1-k]= \sum_{k=3}^{n-1}\frac{(n-1)!}{(n-1-k)!}dp[n-1-k]

令n-1-k=k,  \small =\sum_{k=2}^{n-3} dp[k]\frac{(n-1)!}{2(k!)},设这个为fk,fk与f(k-1)有递推式

代码:https://www.nowcoder.com/acm/contest/view-submission?submissionId=30339084

 

例题7.2018牛客网多校6 C   N,M<=1e18,min(N,M)<=1e6

题意:N个不可重集合,M个数字,

N个操作,每次操作选一个数1<=x<=m插入到第i到N个集合里,问最后有多少种不同的结果

思路:由于不可重集合,所以填了跟没填一样(看成填0进去)

枚举填进去的数字种类个数i(不包括0)i属于[1,E=min(n,m)] 

那么\small ans=\sum_{i=1}^{E}\binom{M}{i}i\frac{(N-1)!}{(N-i)!},M选i种数字填进去*第一列不能填0*剩下的多重集排列

代码:https://www.nowcoder.com/acm/contest/view-submission?submissionId=30878535

 

例题8.BZOJ4555   NTT  题意:

 对N个不同球放M个不同球容斥/M!可得S(N,M)

ans=

把循环顺序换一下 

卷积用NTT求,注意等比数列的预处理

代码:https://blog.csdn.net/animalcoder/article/details/81435884

NTT+CDQ解法:https://blog.csdn.net/animalcoder/article/details/81268201

 

例题9.BZOJ3625  n,m,c[i]<=1e5

题意:有个二叉树(可以不满,点个数任意),上的点权只能在c[1]~c[n]里面取,

点权和相同下,层数,对应点的点权,左子树右子树个数不同就算两种方案

分别输出点权值和为s的方案,1<=s<=m,下图是c1=1,c2=2,n=2,s=3的情况

设F(i)为权值和为i的方案数,G(i)为根节点的权值是否可以为i

枚举根节点的权值:有\small F(s)=\sum_{i=1} ^{s}g(i)\sum_{j=1}^{s-i}F(j)F(s-i-j),即左子树*右子树的答案

就可以看成F=GF^2+1,1是指F(0)=1

解方程可得\small F=\frac{2}{1+\sqrt{1-4G}}

套一个多项式求逆跟开方的板子即可,NTT求和上限E取m

//如果 r* 2^k +1 是个素数,那么在modr*2^k+1意义下,可以处理 2^k 以内规模的数据,
//2281701377=17*2^27+1 是一个挺好的数,平方刚好不会爆 long long
//1004535809=479*2^21+1 加起来刚好不会爆 int 也不错
//还有就是 998244353=119*2^23+1
//2^21=2e6 
//BZOJ3625 1985ms
#include<bits/stdc++.h> 
#define ll long long
using namespace std;

inline int gi(){//快读 
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return f?x:-x;
}
const int _ = 800005;
const int mod = 998244353;//模数 
int n,m,s,E,lim,ans;int jc[_];
int inv[_],a[_],b[_],rev[_],l,og[_],len;//NTT本身用到的数组 
int qmod(int a,int b){//快速幂 
    int res=1;
    while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
    return res;
}
void ntt(int *P,int opt,int len){//基本上不用改  
    for (int i=0;i<len;++i) if (i<rev[i]) swap(P[i],P[rev[i]]);
    for (int i=1;i<len;i<<=1){
        int W=qmod(3,(mod-1)/(i<<1));//3 根据模数的原根  可能要改 
        if (opt==-1) W=qmod(W,mod-2);
        og[0]=1;
        for (int j=1;j<i;++j) og[j]=1ll*og[j-1]*W%mod;
        for (int p=i<<1,j=0;j<len;j+=p)
            for (int k=0;k<i;++k){
                int x=P[j+k],y=1ll*og[k]*P[j+k+i]%mod;
                P[j+k]=(x+y)%mod,P[j+k+i]=(x-y+mod)%mod;
            }
    }
    if (opt==-1) for (int i=0,Inv=qmod(len,mod-2);i<len;++i) P[i]=1ll*P[i]*Inv%mod;
}
//多项式求逆 
void getInv(int *a,int *b,int n)//基本不改,套路 
{
	static int tmp[_];
	if(n==1)return void(b[0]=qmod(a[0],mod-2));//a[0]的逆元,没有则不能求逆 
	getInv(a,b,n>>1);
	for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
	int L=0; while (!(n>>L&1)) L++;
	for (int i=1;i<(n<<1);i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
	ntt(tmp,1,n<<1); ntt(b,1,n<<1);
	for (int i=0;i<(n<<1);i++)
    	tmp[i]=(ll)b[i]*(2+mod-(ll)tmp[i]*b[i]%mod)%mod;//固定操作 
    ntt(tmp,-1,n<<1);
    for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}
//多项式开方 
const int INV2=(mod+1)/2; 
inline int Root(int a){if (a==1) return 1;}
void GetRoot(int *a,int *b,int n)//基本不改,套路 
{
	static int tmp[_],invb[_];
	if (n==1) return void(b[0]=Root(a[0]));//这题a[0]常数项是1的开方 也可以写sqrt(a[0]) 
	GetRoot(a,b,n>>1);
	memset(invb,0,sizeof(int)*n); getInv(b,invb,n);
	int L=0; while (!(n>>L&1)) L++;
	for (int i=1;i<(n<<1);i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<L);
	for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
	ntt(tmp,1,n<<1); ntt(b,1,n<<1); ntt(invb,1,n<<1);
	for (int i=0;i<(n<<1);i++)
    	tmp[i]=(ll)((ll)b[i]*b[i]+tmp[i])%mod*invb[i]%mod*INV2%mod;
	ntt(tmp,-1,n<<1);
  	for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}


int c;
int main(){
    n=gi();m=gi();//快读
	 
	E=m;        //求和表达式上限 (3.会用到) 
	//lim=n;    //预处理上限(非NTT)
	
	//预处理阶乘 跟逆元阶乘 (非NTT)
    //jc[0]=1; for (int i=1;i<=lim;++i) jc[i]=1ll*jc[i-1]*i%mod;
    //inv[lim]=qmod(jc[lim],mod-2);
    //for (int i=lim;i;--i) inv[i-1]=1ll*inv[i]*i%mod;
    
    //1.NTT   固定操作,处理数据的两倍 对2^k向上取整=len   len卷积上限 
    for (len=1;len<=(E<<1);len<<=1) ++l;--l;//len<=(E<<1)
    
    //2.NTT	  固定操作,预处理rev 蝶形变换 
    for (int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
    
    //3.NTT   灵活操作  ai bi的表达式 
	for(int i=1;i<=n;i++) {
		c=gi();a[c]=mod-4;	
	}
	a[0]=1;
    
    //4.1 NTT  开根操作   a不变,b为开方结果 
    GetRoot(a,b,len>>1);
    //for(int i=0;i<=16;i++)printf("%d ",b[i]);puts("");printf("m=%d\n",len);
    
    //4.2 NTT  求逆操作  对a求逆,a保持不变,b为求逆结果
    memset(a,0,sizeof(a));
	b[0]=(b[0]+1)%mod; 
    getInv(b,a,len>>1);
    
    //4.NTT   固定操作  ai卷积bi  也就是(a0+a1x+a2x^2...)*(b0+b1x+b2x^2....)=sum_{i=0...n}sum_{j=0...i}ai*b(j-i)
    //ntt(a,1);ntt(b,1); 
    //for (int i=0;i<len;++i) a[i]=1ll*a[i]*b[i]%mod;
    //ntt(a,-1);
    
    // 5.NTT   非固定操作  计算求和表达式的答案ans  这里是输出2*f(i) 
    for (int i=1;i<=m;i++) printf("%d\n",1ll*2*a[i]%mod);

    return 0;
}

 

 

 

 

 

 

题意:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值