语义分割之copy_paste数据增强

记录一种另类的语义分割增强算法,copy and paste,简而言之,就是把A图的mask扣下来放到B图中,需要A图的原图,A图的8位mask,B图的原图,B图的8位mask。不过很可惜,在我这里尝试了以后,感觉造出来的数据极度不真实,后来也就没用了,仅仅记录一下,代码如下。

"""
Unofficial implementation of Copy-Paste for semantic segmentation
"""
#coding:utf-8
from PIL import Image
import imgviz
import cv2
import argparse
import os
import numpy as np
import tqdm
 
 
def save_colored_mask(mask, save_path):
    lbl_pil = Image.fromarray(mask.astype(np.uint8), mode="P")
    colormap = imgviz.label_colormap()
    lbl_pil.putpalette(colormap.flatten())
    lbl_pil.save(save_path)
 
 
def random_flip_horizontal(mask, img, p=0.5):
    if np.random.random() < p:
        img = img[:, ::-1, :]
        mask = mask[:, ::-1]
    return mask, img
 
 
def img_add(img_src, img_main, mask_src):
    if len(img_main.shape) == 3:
        h, w, c = img_main.shape
    elif len(img_main.shape) == 2:
        h, w = img_main.shape
    mask = np.asarray(mask_src, dtype=np.uint8)
    sub_img01 = cv2.add(img_src, np.zeros(np.shape(img_src), dtype=np.uint8), mask=mask)
    mask_02 = cv2.resize(mask, (w, h), interpolation=cv2.INTER_NEAREST)
    mask_02 = np.asarray(mask_02, dtype=np.uint8)
    sub_img02 = cv2.add(img_main, np.zeros(np.shape(img_main), dtype=np.uint8),
                        mask=mask_02)
    img_main = img_main - sub_img02 + cv2.resize(sub_img01, (img_main.shape[1], img_main.shape[0]),
                                                 interpolation=cv2.INTER_NEAREST)
    return img_main
 
 
def rescale_src(mask_src, img_src, h, w):
    if len(mask_src.shape) == 3:
        h_src, w_src, c = mask_src.shape
    elif len(mask_src.shape) == 2:
        h_src, w_src = mask_src.shape
    max_reshape_ratio = min(h / h_src, w / w_src)
    rescale_ratio = np.random.uniform(0.2, max_reshape_ratio)
 
    # reshape src img and mask
    rescale_h, rescale_w = int(h_src * rescale_ratio), int(w_src * rescale_ratio)
    mask_src = cv2.resize(mask_src, (rescale_w, rescale_h),
                          interpolation=cv2.INTER_NEAREST)
    # mask_src = mask_src.resize((rescale_w, rescale_h), Image.NEAREST)
    img_src = cv2.resize(img_src, (rescale_w, rescale_h),
                         interpolation=cv2.INTER_LINEAR)
 
    # set paste coord
    py = int(np.random.random() * (h - rescale_h))
    px = int(np.random.random() * (w - rescale_w))
 
    # paste src img and mask to a zeros background
    img_pad = np.zeros((h, w, 3), dtype=np.uint8)
    mask_pad = np.zeros((h, w), dtype=np.uint8)
    img_pad[py:int(py + h_src * rescale_ratio), px:int(px + w_src * rescale_ratio), :] = img_src
    mask_pad[py:int(py + h_src * rescale_ratio), px:int(px + w_src * rescale_ratio)] = mask_src
 
    return mask_pad, img_pad
 
 
def Large_Scale_Jittering(mask, img, min_scale=0.1, max_scale=2.0):
    rescale_ratio = np.random.uniform(min_scale, max_scale)
    h, w, _ = img.shape
 
    # rescale
    h_new, w_new = int(h * rescale_ratio), int(w * rescale_ratio)
    img = cv2.resize(img, (w_new, h_new), interpolation=cv2.INTER_LINEAR)
    mask = cv2.resize(mask, (w_new, h_new), interpolation=cv2.INTER_NEAREST)
    # mask = mask.resize((w_new, h_new), Image.NEAREST)
 
    # crop or padding
    x, y = int(np.random.uniform(0, abs(w_new - w))), int(np.random.uniform(0, abs(h_new - h)))
    if rescale_ratio <= 1.0:  # padding
        img_pad = np.ones((h, w, 3), dtype=np.uint8) * 168
        mask_pad = np.zeros((h, w), dtype=np.uint8)
        img_pad[y:y+h_new, x:x+w_new, :] = img
        mask_pad[y:y+h_new, x:x+w_new] = mask
        return mask_pad, img_pad
    else:  # crop
        img_crop = img[y:y+h, x:x+w, :]
        mask_crop = mask[y:y+h, x:x+w]
        return mask_crop, img_crop
 
 
def copy_paste(mask_src, img_src, mask_main, img_main):
    mask_src, img_src = random_flip_horizontal(mask_src, img_src)
    mask_main, img_main = random_flip_horizontal(mask_main, img_main)
 
    # LSJ, Large_Scale_Jittering
    if args.lsj:
        mask_src, img_src = Large_Scale_Jittering(mask_src, img_src)
        mask_main, img_main = Large_Scale_Jittering(mask_main, img_main)
    else:
        # rescale mask_src/img_src to less than mask_main/img_main's size
        h, w, _ = img_main.shape
        mask_src, img_src = rescale_src(mask_src, img_src, h, w)
 
    img = img_add(img_src, img_main, mask_src)
    mask = img_add(mask_src, mask_main, mask_src)
 
    return mask, img
 
 
def main(args):
    # input path
    segclass = os.path.join(args.input_dir, 'line_mask8bit') ## 要扣出来粘贴的原始mask
    JPEGs = os.path.join(args.input_dir, 'line_source')## 要扣出来粘贴的原图
 
    segclass2 = os.path.join(args.input_dir, 'first_mask8bit') ### 被粘贴的图mask
    JPEGs2 = os.path.join(args.input_dir, 'first_sourceimg') ### 被粘贴的图 原图
    
    # create output path
    os.makedirs(args.output_dir, exist_ok=True)
    os.makedirs(os.path.join(args.output_dir, 'SegmentationClass'), exist_ok=True)
    os.makedirs(os.path.join(args.output_dir, 'JPEGImages'), exist_ok=True)
 
    masks_path = os.listdir(segclass2)
    tbar = tqdm.tqdm(masks_path, ncols=100)
    for mask_path in tbar:
        # get source mask and img
        mask_src = np.asarray(Image.open(os.path.join(segclass, mask_path)), dtype=np.uint8)
        img_src = cv2.imread(os.path.join(JPEGs, mask_path.replace('NB', 'source')))
 
        # random choice main mask/img
        mask_main_path = np.random.choice(masks_path)
        mask_main = np.asarray(Image.open(os.path.join(segclass2, mask_main_path)), dtype=np.uint8)
        img_main = cv2.imread(os.path.join(JPEGs2, mask_main_path.replace('NB', 'source')))
 
        # Copy-Paste data augmentation
        mask, img = copy_paste(mask_src, img_src, mask_main, img_main)
 
        mask_filename = "copy_paste_" + mask_path
        img_filename = mask_filename.replace('NB', 'paste')
        save_colored_mask(mask, os.path.join(args.output_dir, 'SegmentationClass', mask_filename))
        cv2.imwrite(os.path.join(args.output_dir, 'JPEGImages', img_filename), img)
 
 
def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--input_dir", default="./", type=str,
                        help="input annotated directory")
    parser.add_argument("--output_dir", default="./", type=str,
                        help="output dataset directory")
    parser.add_argument("--lsj", default=True, type=bool, help="if use Large Scale Jittering")
    return parser.parse_args()
 
 
if __name__ == '__main__':
    args = get_args()
    main(args)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值