31号的作业

import  numpy as np
data = np.array( [1,2,3])
print(data)
import  numpy as np
data = np.array( [1,2,3])
print(data . max())
import  numpy as np
data1 = np. ones(3)
data2 = np. zeros(3)
data3 = np. random.random(3)
data4 = np. array([1,2])
data5 = np. ones(2)
import  numpy as np
data = np . array([1,2])
ones = np . ones(2)
s = data + ones
print( s )
import  numpy as np
data = np . array([1,2])
print( data.sum())
import numpy as np
data = np.array([[1,2,3,4,5],[2,3,4,6,5]])
one = np . ones(1)
print(data + one)
import numpy as np
data = np.array([1,2])
x = data * 1.6
print(x)
import numpy as np
one = np.ones((3,2))
print(one)
import numpy as np
one = np.zeros((3,2))
print(one)
import numpy as np
one = np.random.random((3,2))
print(one)
import numpy as np
data = np.array([1,2,3])
one = np.array([[1,100,10000],
                [10,1000,100000]])
s = data * one
print( s )
import numpy as np
a = np.array([1,1,1,1])
b = np.array([[1],[1],[1],[1]])
a+b
array([[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]]) # 这叫python的广播机制
c = np.array([[1,1,1,1]])
c+b
array([[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]])
W = np.array([[1,1,1],[2,2,2]])
W[:,1]
array([1, 2])
W[:,1] = np.array([5,5])
W
array([[1, 5, 1],
[2, 5, 2]])
import numpy as np
matrix = [
[1,2,3,4],
[5,6,7,8],
[9,10,11,12]
]
p1 = np.delete(matrix, 1, 0) 
print(’>>>>p1>>>>\n’,p1)
p2 = np.delete(matrix, 1, 1)
print(’>>>>p2>>>>\n’,p2)
p3 = np.delete(matrix, 1) 
print(’>>>>p3>>>>\n’,p3)
p4 = np.delete(matrix, [0,1], 1) 
print(’>>>>p4>>>>\n’,p4)
import numpy as np
matrix = [
[1,2,3,4],
[5,6,7,8],
[9,10,11,12]
]
import numpy as np
matrix = [
[1,2,3,4],
[5,6,7,8],
[9,10,11,12]
]
q1 = np.insert(matrix, 1, [1,1,1,1], 0) # 第0维度(行)第1行添加[1,1,1,1]
print(’>>>>q1>>>>\n’,q1)
q2 = np.insert(matrix, 0, [1,1,1], 1) # 第1维度(列)第0列添加1,1,1
print(’>>>>q2>>>>\n’,q2)
q3 = np.insert(matrix, 3, [1,1,1,1], 0) # 第0维度(行)第3行添加[1,1,1,1]
print(’>>>>q3>>>>\n’,q3)
import numpy as np
a = np.array([[1,1,1],[2,2,2],[0,3,6]])
a
array([[1, 1, 1],
[2, 2, 2],
[0, 3, 6]])
import numpy as np
y1 = np.linspace(-10.0,10.0) # 默认生成50个数据
y1
array([-10. , -9.59183673, -9.18367347, -8.7755102 ,
-8.36734694, -7.95918367, -7.55102041, -7.14285714,
-6.73469388, -6.32653061, -5.91836735, -5.51020408,
-5.10204082, -4.69387755, -4.28571429, -3.87755102,
-3.46938776, -3.06122449, -2.65306122, -2.24489796,
-1.83673469, -1.42857143, -1.02040816, -0.6122449 ,
-0.20408163, 0.20408163, 0.6122449 , 1.02040816,
1.42857143, 1.83673469, 2.24489796, 2.65306122,
3.06122449, 3.46938776, 3.87755102, 4.28571429,
4.69387755, 5.10204082, 5.51020408, 5.91836735,
6.32653061, 6.73469388, 7.14285714, 7.55102041,
7.95918367, 8.36734694, 8.7755102 , 9.18367347,
9.59183673, 10. ])
import numpy as np
x = np.array([[1,2,3],[4,5,6],[1,2,3]])
x.flatten()
array([1, 2, 3, 4, 5, 6, 1, 2, 3]) # 拉平
x.ravel()
array([1, 2, 3, 4, 5, 6, 1, 2, 3])
x.ravel(‘F’)
array([1, 4, 1, 2, 5, 2, 3, 6, 3]) # 按列拉平
x.flatten(‘F’)
array([1, 4, 1, 2, 5, 2, 3, 6, 3])
x.flatten()[1] = 20
x
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3]])
x.ravel()[1] = 20
x
array([[ 1, 20, 3],
[ 4, 5, 6],
[ 1, 2, 3]])
x.reshape(1,-1) 
array([[1, 2, 3, 4, 5, 6, 1, 2, 3]]) 
x = np.array([1,2,3,6,7,8]) 
***>>> x[None,:] 
array([[1, 2, 3, 6, 7, 8]])

x[:,None] 
array([[1],
[2],
[3],
[6],
[7],
[8]])
x[np.newaxis, :] 
array([[1, 2, 3, 6, 7, 8]])
import numpy as np
x = np.array([[1,2,3],[4,5,6]])
np.zeros_like(x) # 生成一个和x大小相同的全零矩阵
array([[0, 0, 0],
[0, 0, 0]])
1
2
3
4
5
import numpy as np
n = np.random.rand(3,4)
n
array([[0.11502462, 0.3503468 , 0.6206656 , 0.35172063],
[0.66367565, 0.10195004, 0.22708003, 0.9318615 ],
[0.77946053, 0.81804715, 0.2272248 , 0.17736476]])
np.pad(A,((3,2),(2,3)),‘constant’,constant_values = (0,0))
array([[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 95, 96, 0, 0, 0],
[ 0, 0, 97, 98, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0]])
np.pad(b, ((0,0),(1,1),(1,1)), ‘constant’, constant_values = 0)
array([[[0, 0, 0, 0],
[0, 1, 2, 0],
[0, 3, 4, 0],
[0, 0, 0, 0]],
import numpy as np
c = np.array([1,2,5,4])
c[:,np.newaxis]
array([[1],
      [2],
      [5],
      [4]])
c[np.newaxis,:] 
array([[1, 2, 5, 4]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值