机器学习简单算法整理

今天整理了一下简单的机器学习算法。打算按照这个提纲学习代码实现,不一定按顺序,但希望自己每学习一个都能了解透彻。打算寒假前就仔细研究这块了。

一、Regression(回归)

  • Ordinary Least Squares普通最小二乘法
  • Logistic Regression逻辑回归
  • Stepwise Regression逐步回归
  • Multivariate Adaptive Regression Splines (MARS)多元自适应回归
  • Locally Estimated Scatterplot Smoothing (LOESS)本地散点平滑估计
二、基于实例的方法

  • k-Nearest Neighbour (kNN)
  • Learning Vector Quantization (LVQ)学习矢量量化
  • Self-Organizing Map (SOM)自组织映射算法
三、Regularazation 正则化方法

  • Ridge Regression岭回归数值计算方法
  • Least Absolute Shrinkage and Selection Operator (LASSO)至少绝对的收缩和选择算子
  • Elastic Net弹性网络
四、决策(Decison)树学习

  • Classification and Regression Tree (CART)分类回归树
  • Iterative Dichotomiser 3 (ID3)迭代二叉树3代
  • C4.5
  • Chi-squared Automatic Interaction Detection (CHAID)卡方自动交互检测
  • Decision Stump单层决策树
  • Random Forest随机森林
  • Multivariate Adaptive Regression Splines (MARS)多元自适应回归样条
  • Gradient Boosting Machines (GBM)梯度推进机
五、Bayesian 贝叶斯

  • Naive Bayes朴素贝叶斯
  • Averaged One-Dependence Estimators (AODE)平均单依赖估计
  • Bayesian Belief Network (BBN)贝叶斯信念网络
六、Kernel Method 内核方法

  • Support Vector Machines (SVM)支持向量机
  • Radial Basis Function (RBF)径向基函数
  • Linear Discriminate Analysis (LDA)线性鉴别分析
七、Clustering 聚类方法

  • k-Means
  • Expectation Maximisation (EM)期望最大化算法

八、关联规则学习

  • Apriori 算法
  • Eclat 算法
九、人工神经网络

  • Perceptron感知器神经网络
  • Back-Propagation反向传递
  • Hopfield Network(Hopfield网络)
  • Self-Organizing Map (SOM)自组织映射
  • Learning Vector Quantization (LVQ)学习矢量量化
十、深度学习‘

  • Restricted Boltzmann Machine (RBM)受限波尔兹曼机
  • Deep Belief Networks (DBN)深度信念网络
  • Convolutional Network回旋神经网
  • Stacked Auto-encoders堆栈式自动编码器
十一、Dimensionality reduction (降维方法)

  • Principal Component Analysis (PCA)主成分分析
  • Partial Least Squares Regression (PLS)偏最小二乘回归
  • Sammon Mapping
  • Multidimensional Scaling (MDS)多维尺度
  • Projection Pursuit投影寻踪
十二、Ensemble 集成方法

  • Boosting
  • Bootstrapped Aggregation (Bagging)自展输入引导式聚合
  • AdaBoost
  • Stacked Generalization (blending)堆栈泛化
  • Gradient Boosting Machines (GBM)梯度Boosting机器
  • Random Forest随机森林

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值