隐私计算python实现差分隐私(待更新)

1 基本概念

        (1)数据库邻近性:对于两个数据库D和D',它们之间仅有一个个体数据不同

        (2)敏感性:对于查询函数f,其敏感性定义为从数据库D和D'的任意邻近数据库的查询差值的最大绝对值。

        例如:数据库查询select count(*) from D where type="糖尿患者",由于类型只有糖尿患者和非糖尿患者,因此,查询结果最大改变为1,即敏感性为1

        (3)概率敏感性:对于查询函数f,其概率敏感性考虑了使用随机化算法添加噪音或扰动的情况。它定义为从数据库D到D'的任意邻近数据库,通过随机化算法添加噪音后,查询结果的最大差值的概率:

PS(f)=Pr\left [ \left | f(D)-f(D') \right | \right> t]

2 差分隐私定义

        一随机算法A满足ε-差分隐私,当且仅当

exp(-\varepsilon )\leqslant \frac{Pr\left [ A(D)=O \right ]}{Pr\left [ A(D')=O) \right ]}\leqslant exp(\varepsilon )

        对任意“相邻”数据集D和D'及任意输出O都成立,则称算法满足ε-差分隐私

3 差分隐私常用机制及代码实现

3.1 拉普拉斯机制(严格差分隐私)

        拉普拉斯机制(Laplace Mechanism)是差分隐私中最常用的随机化机制之一,用于在查询结果中添加噪音以保护个体隐私。它基于拉普拉斯分布(Laplace Distribution),通过向查询结果添加服从拉普拉斯分布的噪音来实现隐私保护。

        拉普拉斯分布是一个以0为均值、尺度参数为λ的对称指数分布,其概率密度函数定义如下:

p(x)=\frac{1}{2\lambda }exp(-\frac{\left | x \right |}{\lambda })

       敏感度:

S(f)=\max \left | \left | f(D)-f\left(D^{\prime}\right) \right | \right |_{1}

        以下证明拉普拉斯机制满足ε-差分隐私,有:

\frac{Pr(A(D)=y)}{Pr(A(D')=y)}=\frac{Pr(f(D)+\eta =y)}{Pr(f(D')+\eta=y)}=\frac{-e^{\frac{\left | y-f(D) \right |}{\lambda }}}{-e^{\frac{\left | y-f(D') \right |}{\lambda }}}\leqslant e^{\frac{\left | f(D)-f(D') \right |}{\lambda }}={e^{\frac{​{S\left( f \right)}}{\lambda }}}

        这里,令λ=S(f)/ε即可得拉普拉斯机制满足差分隐私条件。其中,ε也叫做隐私预算,ε越大,噪声越小,ε越小,噪声越大

        以下是python代码实现拉普拉斯机制加噪

"""
@Time : 2023/10/8 0008 15:49
@Auth : yeqc
"""

# 基于 拉普拉斯机制的 差分隐私方法,拉普拉斯噪声 (1/2λ)*exp(-x/λ)

import numpy as np

class LaplaceDiffPrivacy:

    def __init__(self, epsilo):
        self.epsilo = epsilo

    def add_noise(self, data):
        # 计算拉普拉斯噪声的尺度,b = λ,一般取sensitive/epsilo,sensitive(敏感度)是指改变一个人数据查询结果改变的最大值
        sensitive = 1
        lamda = sensitive / self.epsilo

        # 生成拉普拉斯噪声,这里另随机种子random_state = 42  让它每次运行产生的噪声都一样
        noise = np.random.laplace(loc=0.0,scale=lamda,size=len(data))
        # 加噪后的数据
        noised_data = data + noise

        return noised_data

dp_laplace = LaplaceDiffPrivacy(epsilo=0.1)

data = [i for i in range(1, 11)]

noise_data = dp_laplace.add_noise(data)

print(noise_data)

3.2 高斯机制(松弛差分隐私)

        高斯机制(Gaussian mechanism)是差分隐私中一种常用的连续机制,用于在查询结果中引入噪声以保护隐私。其核心思想是在真实查询结果上添加来自正态分布的随机噪声。

        高斯分布是一种连续型的概率分布,具有钟形曲线的特征。它由两个参数完全描述:均值(μ)和标准差(σ)。均值决定了分布的中心位置,标准差决定了分布的广度和分布的峰值。

p(x)=\frac{1}{\sqrt{2\pi \sigma ^{2}}}e^{-\frac{(x-\mu )^{2}}{2\sigma^{2}}}

        其中,μ一般取0,σ=S(f)/ε通过控制 σ的取值可以决定噪声的尺度。高斯机制中敏感度定义为:

S(f)=\max \left | \left | f(D)-f\left(D^{\prime}\right) \right | \right |_{2}

        以下是python代码实现高斯机制加噪

"""
@Time : 2023/10/15 0015 19:09
@Auth : yeqc
"""
# 基于 高斯机制的 差分隐私方法
import numpy as np

class GaussianDiffPrivacy:

    def __init__(self, epsilo):
        self.epsilo = epsilo

    def add_noise(self, data):
        sensitve = 1
        # 高斯噪声中的标准差
        noise_stddev = sensitve / self.epsilo

        # np.random.normal()函数生成均值为loc=0、标准差为noise_stddev的高斯噪声
        noise = np.random.normal(loc=0.0, scale=noise_stddev, size=len(data))
        # 加噪后的数据
        noised_data = data + noise

        return noised_data


dp_gaussian = GaussianDiffPrivacy(epsilo=0.1)

data = [i for i in range(1, 11)]

noised_data = dp_gaussian.add_noise(data)

print(noised_data)
  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
差分隐私(Differential Privacy)是一种保护数据隐私的技术,通过对查询结果增加一定的噪音,使得查询者无法确定某个个体的输入是否被包含在查询结果中,从而保护了个体的隐私。Laplace 机制是差分隐私中最常用的一种机制,它是一种基于拉普拉斯分布的随机化技术。 下面是使用 Python 实现差分隐私 Laplace 机制的详细步骤: 1.导入必要的库 ```python import numpy as np import random ``` 2.定义 Laplace 分布函数 ```python def laplace_mech(data, epsilon, sensitivity): beta = sensitivity / epsilon noise = np.random.laplace(0, beta, 1) return data + noise ``` 其中,data 是输入数据,epsilon 是隐私预算,sensitivity 是查询的敏感度。beta 是拉普拉斯分布的参数,噪音的大小与 epsilon 和 sensitivity 成反比。np.random.laplace(0, beta, 1) 生成一个服从拉普拉斯分布的噪音。 3.测试 Laplace 机制 ```python data = 10 # 输入数据 epsilon = 1 # 隐私预算 sensitivity = 1 # 查询敏感度 noisy_data = laplace_mech(data, epsilon, sensitivity) print("原始数据:", data) print("加噪数据:", noisy_data) ``` 输出结果如下: ``` 原始数据: 10 加噪数据: [9.26521862] ``` 可以看到,加入噪音后的数据与原始数据有所偏差,但是偏差的大小受到隐私预算的控制,当 epsilon 越大,允许的噪音就越大,隐私保护就越弱;当 epsilon 越小,允许的噪音就越小,隐私保护就越强。 总的来说,差分隐私 Laplace 机制是一种简单而有效的隐私保护技术,可以应用于各种数据分析场景中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安心不心安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值