进程池 线程池 同步异步 阻塞非阻塞

什么是进程/线程池

    池本身表示一个容器,本质上就是一个存储进程或线程的列表

池中该储存线程还是进程

    如果是IO密集型任务使用线程池,如果是计算密集型任务则使用进程池

为什么需要进程或者线程池

    在很多情况下需要控制进程或线程的数量在一个合理的范围内,例如TCP程序中,一个客户端对应一个线程,虽然线程的开销小,但是肯定不能无限开,否则操作系统资源迟早被耗尽,解决的办法就是控制线程的数量。线程或进程池不仅帮助我们控制线程/进程的数量,还帮助我们完成了线程/进程的创建,销毁,以及任务的分配

进程池的使用:

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time,os

# 创建进程池,指定最大进程数为3,此时不会创建进程,不指定数量时,默认为CPU和核数
pool = ProcessPoolExecutor(3)

def task():
time.sleep(1)
print(os.getpid(),"working..")

if __name__ == '__main__':
for i in range(10):
pool.submit(task) # 提交任务时立即创建进程

# 任务执行完成后也不会立即销毁进程
time.sleep(2)

for i in range(10):
pool.submit(task) #再有新任务是 直接使用之前已经创建好的进程来执行

线程的使用

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread,active_count
import time,os

# 创建进程池,指定最大线程数为3,此时不会创建线程,不指定数量时,默认为CPU和核数*5
pool = ThreadPoolExecutor(3)
print(active_count()) # 只有一个主线

def task():
time.sleep(1)
print(current_thread().name,"working..")

if __name__ == '__main__':
for i in range(10):
pool.submit(task) # 第一次提交任务时立即创建线程

# 任务执行完成后也不会立即销毁
time.sleep(2)

for i in range(10):
pool.submit(task) #再有新任务时 直接使用之前已经创建好的线程来执行

同步 异步 阻塞 非阻塞

阻塞:当程序执行过程中遇到IO操作时,在执行io操作时,程序无法继续执行其他代码,称为阻塞。                                       非阻塞:程序在正常运行没有遇到IO操作,或者通过某种方式使程序即使遇到了也不会停在原地,还可以执行其他操作,以提高CPU的占用率。                                                                   

同步和异步 指的是提交任务的方式                                            同步指调用:发起任务后必须在原地等待任务执行完成,才能继续执行                                 异步指调用:发起任务后必须不用等待执行任务,可以立即开启执行其他操作                                                                                  同步会有等待的效果但是这和阻塞是完全不同的,阻塞时程序会被剥夺CPU执行权,而同步调用则不会!
异步的调用一

from concurrent.futures import ThreadPoolExecutor
from threading import current_thread
import time

pool = ThreadPoolExecutor(3)
def task(i):
time.sleep(0.01)
print(current_thread().name,"working..")
return i ** i

if __name__ == '__main__':
objs = []
for i in range(3):
res_obj = pool.submit(task,i) # 异步方式提交任务# 会返回一个对象用于表示任务结果
objs.append(res_obj)

# 该函数默认是阻塞的 会等待池子中所有任务执行结束后执行
pool.shutdown(wait=True)

# 从结果对象中取出执行结果
for res_obj in objs:
print(res_obj.result())
print("over")

异步的调用二

import time

pool = ThreadPoolExecutor(3)
def task(i):
time.sleep(0.01)
print(current_thread().name,"working..")
return i ** i

if __name__ == '__main__':
objs = []
for i in range(3):
res_obj = pool.submit(task,i) # 会返回一个对象用于表示任务结果
print(res_obj.result()) #result是同步的一旦调用就必须等待 任务执行完成拿到结果
print("over")

转载于:https://www.cnblogs.com/tangda/p/10502330.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值