Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
解题思路:
求BST(二叉排序树)中第k小的数。
方法一:
遍历整棵二叉树,之后进行排序,输出第k个节点的val值就可以。代码例如以下(当中我们採用堆栈,先进后出,从右到左。先序遍历整棵二叉树):
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
if(root==NULL) return 0;
stack<TreeNode*> qu;
vector<int> res;
qu.push(root);
while(!qu.empty())
{
TreeNode* node=qu.top();
qu.pop();
res.push_back(node->val);
if(node->right!=NULL)
{
qu.push(node->right);
}
if(node->left!=NULL)
{
qu.push(node->left);
}
}
sort(res.begin(),res.end());
return res[k-1];
}
};
方法二:
在二叉搜索树中,找到第K个元素。
算法例如以下:
1、计算左子树元素个数left。
2、 left+1 = K。则根节点即为第K个元素
left >=k, 则第K个元素在左子树中,
left +1 <k, 则转换为在右子树中,寻找第K-left-1元素。
代码例如以下:class Solution {
public:
int treeSize(TreeNode* root)
{
if(root==NULL) return 0;
return 1+treeSize(root->left)+treeSize(root->right);
}
int kthSmallest(TreeNode* root, int k) {
if(root==NULL) return 0;
int leftsize=treeSize(root->left);
if(k==leftsize+1)
return root->val;
else if(leftsize>=k)
return kthSmallest(root->left, k);
else
return kthSmallest(root->right, k-leftsize-1);
}
};