Python中的shape和reshape

shape和reshape都是数组array中的方法

  • shape[index] ----- 获取数组中第index层子数组的元素个数。0代表最外层数组。 例如:
#coding=utf-8
import numpy as np
a = np.array([1,2,3,4,5,6,7,8])  #一维数组(只有一层的数据)
print(a.shape[0])  #值为8,因为只有一层数组,里面有8个元素
print(a.shape[1])  #IndexError: tuple index out of range(没有第2层数组,下标不存在,元组索引超出范围)

a = np.array([[1,2,3,4],[5,6,7,8]])  #二维数组(有两层元素的数组)
print(a.shape[0])  #值为2,最外层数组中有2个元素,2个元素还是数组。
print(a.shape[1])  #值为4,内层数组有4个元素。
print(a.shape[2])  #IndexError: tuple index out of range(没有第3层数组,下标不存在,元组索引超出范围)

  • reshape((x,y)) ----- 将现有数组的元素,转成新维度长度的数组。新生成的数组总个数,必须与原数组总数相等,否则就会报错。
    a = np.array([1,2,3,4,5,6,7,8])  #一维数组
    b=a.reshape((2,4))
    print(b)
    #结果:
    #    [[1 2 3 4]
    #     [5 6 7 8]]

    c=a.reshape((4,2))
    print(c)
    #结果:
    #[[1 2]
    # [3 4]
    # [5 6]
    # [7 8]]

一个参数为-1时,那么reshape函数会根据另一个参数的维度计算出数组的另外一个shape属性值。

    a = np.array([1,2,3,4,5,6,7,8])  #一维数组
    d=a.reshape((-1,4))
    print(d)
    #结果:
    #    [[1 2 3 4]
    #     [5 6 7 8]]

    f=a.reshape((4,-1))
    print(f)
    #结果:
    #[[1 2]
    # [3 4]
    # [5 6]
    # [7 8]]

reshape新生成数组和原数组公用一个内存,不管改变哪个都会互相影响。

    a = np.array([1,2,3,4,5,6,7,8])  #一维数组
    e=a.reshape((2,4))
    e[0][2]=99
    print(e)
    #结果:
    #[[ 1  2 99  4]
    # [ 5  6  7  8]]
    print(a)
    #结果
    #[ 1  2 99  4  5  6  7  8]
展开阅读全文

没有更多推荐了,返回首页