近期随着ChatGPT的相关发展信息席卷而来,部分产品经理,尤其是功能产品经理越加担忧被职场淘汰,能力无法跟不上科技发展趋势,纷纷了解如何转为AI从产品经理岗位。可以肯定的是随着人工智能技术的发展,不仅是科技公司运用了大量AI产品,在我们身边也出现了大量的AI产品,例如:AI音箱、扫地机器人、无人机等等、导购机器人、面部识别、自动驾驶汽车等等。在这些AI产品普及的同时,自然少不了AI产品产品经理的付出,非Ai产品经理想要了解或者成为Ai产品经理是完全可以理解的,那如果为成为ai产品经理准备呢?
1、先了解什么是AI产品经理
我认为的Ai产品经理,其实它是在通用产品经理的基础上,增加了一个显著能力,就是如何运用现有的AI技术去帮助客户解决问题,并在原有工作效率,或用户体验上起到增强的效果
2、目前的AI类别有哪些?
①视觉AI产品经理,也就是我们常说的CV,包含车辆识别、人脸识别、图像检索等方向
②机器学习AI产品经理,包含了智能推荐、出行、大数据平台等用于机器学习等方向,其实机器学习类的方向是受众较广的类别,几乎涉及大量数据的训练和使用,都会用到机器学习
③AI应用产品经理,包括虚拟人、数字人、机器人、智能音箱、智能客服、VR\AR\MR等方向
④语义AI产品经理,包括NLP、知识图谱、机器翻译、搜索等方向
当然还有一些招聘需求较少的,比如量子计算、边缘计算等等细分岗位
看了以上这些,是不是觉得很高大上,其实还行,除了带有对话聊天元素AI最难外,如果专研一个方向的话,其实是比较好学的,但是从哪里入手?
3、转行AI产品经理应该要懂的基础知识
-
机器学习、深度学习的原理及应用场景,了解迁移学习、增强学习主要是应用方向;
-
特征学习,包括文本特征、图像特征、视频特性、情感特征等各样特征了解和学习;
-
算法逻辑理解:像流行算法,比如做推荐系统,需要懂协同过滤,还有GBTD+LR、逻辑回归、特征交叉、朴素贝叶斯等常被应用的算法
总而言之,需要懂技术,方能用AI来解决问题,才能有方向和思路去做好。这是传统和Ai产品经理很显著的区别,其实从这个角度理解,AI产品经理对于技术理论和实践应用,或者解决方案是需要较高程度的理解的。
基于对技术的理解程度,很多同学会问,那AI产品经理是否需要看论文?其实大可不必,不仅是过于细节,而且你也不一定能看的懂,毕竟现在算法研究和迭代是较快的,部分算法在商业场景也未得实践,比如比如冒泡排序算法
下面引用一张图,比较好的阐释应该要了解的常用知识
4、AI产品经理的工作日常是怎么样的?
其实传统产品经理要做的工作AI产品经理也少不了,比如用户研究、商业分析、需求分析、产品设计、对接ue、需求文档撰写、对接运营、项目管理等和算法工程师沟通,如何算法选型去满足客户的需求,提高效率,或者解决业务痛点。
这里有一个很重要的能力,就是分析及沟通能力,因为在协作中,会涉及算法、机器学习平台、特征工程构建、SDK开发、API开发、中台开发、前端业务开发、后端开发等等多个团队,因此AI产品经理需具有全局思维,对技术架构有认知,对接流程需非常清晰,又能把握细节,具备端到端的串联能力,这样才能有效组织团队,协同开展工作
除此之外,AI产品经理应该更注重对业务流程的理解,及将需求分析透彻,知道用户或客户要什么,他想要的和你提供的解决方案本质区别是什么,对于需求把握不准的,可以找大佬或者资深同学探究下,要把最基础工作做好。
说了这么多,基于个人理解的成分多些,那就需求导向看看市场要求
5、从招聘岗位看看AI产品经理应该掌握的能力
这边筛选了几个大公司的岗位
百度|AI资产产品经经理(对话机器人方向)
职责描述:
1、根据公司战略发展目标,用户市场调研结果,结合市场的特征与需求,负责智能对话机器人(类ChatGPT类)等AI产品规划,建设与落地
2、承担AI产品相关调研、业务设计、商业设计,推动产品0-1的落地,拆解产品全链路核心数据指标,快速实验迭代促进指标提升
3、紧密协调并推动投放、产品、技术、市场、 运营等部门成员,完成产品设计、开发、运营全流程管理,为产品目标负责
4、根据市场反馈和产品运营数据,持续改善优化产品,提升产品数据指标 任
职位要求:
1、全日制本科及以上学历 -5年以上AI产品经验,具备开放域大模型对话机器人经验者优先
2、对AI技术前沿有敏锐的洞察力,熟悉AIGC,人工智能大模型,喜欢挑战和尝试,逻辑思维严谨,对用户体验敏感 -有AI技术背景或能够与技术(工程、算法)无障碍的沟通产品方案
3、数据意识好,动手分析能力强,善于通过数据发现问题本质;对产品运营有深入研究,善于结合用户及场景,灵活设计产品方案
腾讯微保|高级AI产品经理
职位描述:
岗位职责:
1、负责智能客服的和场景应用,深入业务场景识别流程或系统的堵塞问题,搭建自助工具和智能能力,设计并推进相关优化机制落地,提升人工团队的服务效能;
2、了解和熟悉知识库的相关应用,包括知识采编、知识搜索、知识搜索等,可以配合平台统一知识库,完善智能客服能力,提升解决率和满意度;
3、与业务、技术、运营团队紧密合作,快速推动项目落地,关注核心业务指标,帮助业务实现转化目标
任职资格:
1、本科及以上学历,5年以上互联网产品工作经验,有AI应用、智能客服、智能对话等系统经验优先,熟悉互联网保险/代理人/经纪人等模式优先
2、有全局视野,具备较好的体系化思考能力和逻辑分析能力,对解决挑战性问题充满热情
3、具备很强的产品owner意识,具备优秀的业务理解和分析能力,具备平台规划和项目推进能力,对项目落地有较强的节奏把握
4、对数据和业务足够敏感,有较强的数据分析和总结能力,能够通过数据分析为产品设计和运营调优提供方向
SHEIN|AI基建高级产品经理
职位描述:
岗位职责:
1、负责整体机器学习平台、AI工具平台及相关AI应用平台等服务的方案设计,产品预研、规划、产品设计和持续演进;
2、深入了解AI相关技术能力,负责AI研发和应用相关产品线的规划,积极推动AI服务能力在各领域的落地;
3、结合实际业务应用场景,提供产品解决方案,有效对接相关业务部门,保质保量的推动需求落地、项目交付;
4、支持平台产品运营及管理,完善平台功能,组织并支持平台运营活动,对产品竞争力和指标效果负责;
5、负责市场调研及竞品分析,跟踪前沿算法进展,关注行业趋势和技术发展动态,定期产出行业分析报告;
任职要求:
1、3年以上互联网产品工作经验,1年以上AI产品经验,2年以上机器学习平台、AIOPS、AI工具、AI框架性产品、AI应用平台等相关构建经验;
2、良好的逻辑和表达能力,善于跨部门整合资源推进项目;善于系统性思维,有产品owner意识,对结果负责;
3、熟悉AI技术和研发过程。
平安银行|AI中台团队产品经理
工作职责
1、负责AI中台人工智能相关产品优化建设和需求分析,流程优化。
2、负责对接行内智能化业务需求,快速响应需求并协助提供解决方案。
3、负责AI产品的宣导推广、运营数据指标分析和用户体验优化提升工作,实现更精准的产品设计和运营。
4、编写需求、对接开发团队,协调推动IT开发和验收上线。
5、进一步挖掘业务团队对智能化赋能的需求,针对问题和痛点进行专项分析,给出行动建议,协调开发资源并推动落地应用。
任职要求
1、硕士及以上学历,计算机视觉、机器学习、人工智能、数据挖掘、信息检索、自然语言处理、语音识别、计算经济学等领域的计算机科学、电子工程、物理数学、统计学或其它人工智能相关专业;
2、熟悉NLP、OCR、ASR、TTS、声纹识别等AI技术,熟悉Viso、Axure等产品流程设计工具,对AI领域发展具有一定的认识。
3、有工作热情,具有良好的沟通技巧和团队合作精神,抗压能力强。
筛选了不同级别的AI产品经理岗位职责和能力,可以归纳出对于相应的方向的AI技术、经验、或专业有较高要求,对于沟通和落地能力的要求比传统产品经理更高
另外一个AI 产品经理工资真不低啊,手动狗头
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓