题目
给定一个数组 nums
,将其划分为两个连续子数组 left
和 right
, 使得:
left
中的每个元素都小于或等于right
中的每个元素。left
和right
都是非空的。left
的长度要尽可能小。
在完成这样的分组后返回 left
的 长度 。
用例可以保证存在这样的划分方法。
示例 1:
输入:nums = [5,0,3,8,6]
输出:3
解释:left = [5,0,3],right = [8,6]
示例 2:
输入:nums = [1,1,1,0,6,12]
输出:4
解释:left = [1,1,1,0],right = [6,12]
提示:
2 <= nums.length <= 105
0 <= nums[i] <= 106
- 可以保证至少有一种方法能够按题目所描述的那样对
nums
进行划分。
题解1
思路
- 使用一个变量保存第 i i i位右侧的最小值
- 从左往右遍历,若当前左侧最大值小于右侧最小值则返回
代码
class Solution:
def partitionDisjoint(self, nums: List[int]) -> int:
leftMax, rightMin = nums[0], [nums[-1]] * len(nums)
for i in range(len(nums)-2, -1, -1):
rightMin[i] = min(nums[i], rightMin[i+1])
left = 1
while left < len(nums) and leftMax > rightMin[left]:
leftMax = max(leftMax, nums[left])
left+=1
return left
复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
题解2
思路
- 一次遍历,保存遍历过程中左侧的最大值
leftMax
- 若当前值小于左侧最大值,则将游标更新到该点,并更新左侧最大值
- 最后返回游标的位置
代码
class Solution:
def partitionDisjoint(self, nums: List[int]) -> int:
leftMax, currentMax = nums[0], nums[0]
left = 0
for i,n in enumerate(nums):
if n > currentMax: currentMax = n
if n < leftMax: left, leftMax = i, currentMax
return left + 1
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)