week3-part1 神经网络概述 Neural Network Overview

在深入神经网络的具体细节之前,我们先快速浏览一下本周的内容。上一周我们讨论了逻辑回归,了解了这个模型(下图左)如何与下面的公式(下图右)建立联系。

如上所示,首先你需要输入特征 x x x,参数 w w w b b b,通过这些你就可以计算出 z z z
x w b } ⟹ z = w T x + b ⟹ α = σ ( z ) ⟹ L ( a , y ) \begin{aligned} &\left.\begin{array}{l} x \\ w \\ b \end{array}\right\} \Longrightarrow z=w^{T} x+b \Longrightarrow \alpha=\sigma(z) \Longrightarrow L(a, y) \end{aligned} xwbz=wTx+bα=σ(z)L(a,y)

接下来就可以计算出 a a a。我们将符号 α \alpha α换为 a a a表示输出 y ^ ⇒ a = σ ( z ) \hat{y} \Rightarrow a = \sigma(z) y^a=σ(z),然后可以计算出损失函数loss function L ( a , y ) L(a, y) L(a,y)

神经网络看起来是如下图这个样子,我们将许多sigmoid单元堆叠起来形成一个神经网络。对于其中的节点,它包含了之前讲的计算的两个步骤:首先通过公式计算出值 z z z,然后通过 σ ( z ) \sigma(z) σ(z)计算值 a a a

在这个神经网络对应的3个节点,首先计算第一层网络中的各个节点相关的数 z [ 1 ] z^{[1]} z[1],接着计算 α [ 1 ] \alpha^{[1]} α[1],在计算下一层网络同理。在这里,我们使用符号 [ m ] ^{[m]} [m]表示第 m m m层网络中节点相关的数,这些节点的集合被称为第 m m m层网络。这样可以保证 m ^{m} m不会和我们之前用来表示单个的训练样本的 ( i ) ^{(i)} (i)(即我们用来表示第 i i i个训练样本)混淆。

整个计算过程如下
x W [ 1 ] b [ 1 ] } ⟹ z [ 1 ] = W [ 1 ] x + b [ 1 ] ⟹ a [ 1 ] = σ ( z [ 1 ] ) \left.\begin{array}{r} x \\ W^{[1]} \\ b^{[1]} \end{array}\right\} \Longrightarrow z^{[1]}=W^{[1]} x+b^{[1]} \Longrightarrow a^{[1]}=\sigma\left(z^{[1]}\right) xW[1]b[1]z[1]=W[1]x+b[1]a[1]=σ(z[1])

x d W [ 1 ] d b [ 1 ] } ⇐ d z [ 1 ] = d ( W [ 1 ] x + b [ 1 ] ) ⇐ d α [ 1 ] = d σ ( z [ 1 ] ) \left.\begin{array}{r} x \\ d W^{[1]} \\ d b^{[1]} \end{array}\right\} \Leftarrow d z^{[1]}=d\left(W^{[1]} x+b^{[1]}\right) \Leftarrow d \alpha^{[1]}=d \sigma\left(z^{[1]}\right) xdW[1]db[1]dz[1]=d(W[1]x+b[1])dα[1]=dσ(z[1])

类似逻辑回归,在向前计算后需要向后计算,接下来你需要使用另外一个线性方程对应的参数计算 z [ 2 ] z^{[2]} z[2],计算 a [ 2 ] a^{[2]} a[2],此时 a [ 2 ] a^{[2]} a[2]就是整个神经网络最终的输出,用 y ^ \hat{y} y^表示。
d a [ 1 ] = d σ ( z [ 1 ] ) d W [ 2 ] d b [ 2 ] } ⟸ d z [ 2 ] = d ( W [ 2 ] α [ 1 ] + b [ 2 ] ) ⟸ d a [ 2 ] = d σ ( z [ 2 ] ) ⟸ d L ( a [ 2 ] , y ) \begin{aligned} &\left.\begin{array}{r} d a^{[1]}=d \sigma\left(z^{[1]}\right) \\ d W^{[2]} \\ d b^{[2]} \end{array}\right\} \Longleftarrow d z^{[2]}=d\left(W^{[2]} \alpha^{[1]}+b^{[2]}\right) \Longleftarrow d a^{[2]}=d \sigma\left(z^{[2]}\right) \Longleftarrow d L\left(a^{[2]}, y\right) \end{aligned} da[1]=dσ(z[1])dW[2]db[2]dz[2]=d(W[2]α[1]+b[2])da[2]=dσ(z[2])dL(a[2],y)
在这个神经网络中,我们反复的计算 z z z a a a,计算 a a a z z z,最后得到了最终输出loss function

你应该记得逻辑回归中,有一些从后向前的计算用来计算导数 d a 、 d z da、dz dadz。同样,在神经网络中我们也有从后向前的计算,看起来就像之前的公式一样,最后会计算 d a [ 2 ] 、 d z [ 2 ] da^{[2]}、dz^{[2]} da[2]dz[2],计算出来之后,然后计算 d w [ 2 ] 、 d b [ 2 ] dw^{[2]} 、 db^{[2]} dw[2]db[2]等,如公式中的箭头一样,从右到左反向计算。

这一节中我们有很多的新符号和细节,我们会在接下来的几节中仔细讨论具体细节。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值