[HOT 100] 0188. 买卖股票的最佳时机 IV

1. 题目链接


188. 买卖股票的最佳时机 IV - 力扣(LeetCode)


2. 题目描述


给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。


3. 题目示例


示例 1 :

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2 :

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

4. 解题思路


  1. 问题理解:这是最多进行k次交易的股票买卖问题,每次交易包括一次买入和一次卖出。
  2. 状态定义
    • f[j][0]:完成j次交易后不持有股票的最大利润
    • f[j][1]:完成j次交易后持有股票的最大利润
  3. 状态转移
    • 对于每一天的价格p和每个可能的交易次数j:
      • 不持有股票的状态转移:
        • 保持前一天的状态(f[j][0])
        • 或者卖出前一天持有的股票(f[j][1] + p)
      • 持有股票的状态转移:
        • 保持前一天的状态(f[j][1])
        • 或者基于j-1次交易的状态买入股票(f[j-1][0] - p)
  4. 初始化
    • 所有持有股票的状态初始化为负无穷(表示不可能)
    • 完成0次交易后不持有股票的状态也设为负无穷(表示不可能)
  5. 遍历顺序
    • 采用逆序更新交易次数,避免覆盖前一天的状态
  6. 结果:返回完成k次交易后不持有股票的最大利润

5. 题解代码


class Solution {
    public int maxProfit(int k, int[] prices) {
        // 初始化动态规划数组
        // f[j][0] 表示完成j次交易后不持有股票的最大利润
        // f[j][1] 表示完成j次交易后持有股票的最大利润
        int[][] f = new int[k + 2][2];
        
        // 初始化边界条件
        for (int j = 1; j <= k + 1; j++) {
            f[j][1] = Integer.MIN_VALUE / 2; // 防止整数溢出
        }
        f[0][0] = Integer.MIN_VALUE / 2; // 不可能完成0次交易后不持有股票
        
        // 遍历每一天的价格
        for (int p : prices) {
            // 逆序更新状态,避免覆盖前一天的交易次数状态
            for (int j = k + 1; j > 0; j--) {
                // 完成j次交易后不持有股票的最大利润:
                // 1. 保持前一天完成j次交易不持有的状态
                // 2. 前一天完成j次交易持有股票,今天卖出(完成第j次交易)
                f[j][0] = Math.max(f[j][0], f[j][1] + p);
                
                // 完成j次交易后持有股票的最大利润:
                // 1. 保持前一天完成j次交易持有的状态
                // 2. 前一天完成j-1次交易不持有股票,今天买入(开始第j次交易)
                f[j][1] = Math.max(f[j][1], f[j - 1][0] - p);
            }
        }
        
        // 返回完成k次交易后不持有股票的最大利润
        return f[k + 1][0];
    }
}


6. 复杂度分析


时间复杂度:O(nk),其中n是价格数组的长度,k是允许的最大交易次数。我们需要遍历n天的价格,对于每一天需要遍历k次交易状态。

空间复杂度:O(k),使用了一个(k+2)×2的二维数组来存储状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值