1. 题目链接
188. 买卖股票的最佳时机 IV - 力扣(LeetCode)
2. 题目描述
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
天价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
3. 题目示例
示例 1 :
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2 :
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
4. 解题思路
- 问题理解:这是最多进行k次交易的股票买卖问题,每次交易包括一次买入和一次卖出。
- 状态定义:
- f[j][0]:完成j次交易后不持有股票的最大利润
- f[j][1]:完成j次交易后持有股票的最大利润
- 状态转移:
- 对于每一天的价格p和每个可能的交易次数j:
- 不持有股票的状态转移:
- 保持前一天的状态(f[j][0])
- 或者卖出前一天持有的股票(f[j][1] + p)
- 持有股票的状态转移:
- 保持前一天的状态(f[j][1])
- 或者基于j-1次交易的状态买入股票(f[j-1][0] - p)
- 不持有股票的状态转移:
- 对于每一天的价格p和每个可能的交易次数j:
- 初始化:
- 所有持有股票的状态初始化为负无穷(表示不可能)
- 完成0次交易后不持有股票的状态也设为负无穷(表示不可能)
- 遍历顺序:
- 采用逆序更新交易次数,避免覆盖前一天的状态
- 结果:返回完成k次交易后不持有股票的最大利润
5. 题解代码
class Solution {
public int maxProfit(int k, int[] prices) {
// 初始化动态规划数组
// f[j][0] 表示完成j次交易后不持有股票的最大利润
// f[j][1] 表示完成j次交易后持有股票的最大利润
int[][] f = new int[k + 2][2];
// 初始化边界条件
for (int j = 1; j <= k + 1; j++) {
f[j][1] = Integer.MIN_VALUE / 2; // 防止整数溢出
}
f[0][0] = Integer.MIN_VALUE / 2; // 不可能完成0次交易后不持有股票
// 遍历每一天的价格
for (int p : prices) {
// 逆序更新状态,避免覆盖前一天的交易次数状态
for (int j = k + 1; j > 0; j--) {
// 完成j次交易后不持有股票的最大利润:
// 1. 保持前一天完成j次交易不持有的状态
// 2. 前一天完成j次交易持有股票,今天卖出(完成第j次交易)
f[j][0] = Math.max(f[j][0], f[j][1] + p);
// 完成j次交易后持有股票的最大利润:
// 1. 保持前一天完成j次交易持有的状态
// 2. 前一天完成j-1次交易不持有股票,今天买入(开始第j次交易)
f[j][1] = Math.max(f[j][1], f[j - 1][0] - p);
}
}
// 返回完成k次交易后不持有股票的最大利润
return f[k + 1][0];
}
}
6. 复杂度分析
时间复杂度:O(nk),其中n是价格数组的长度,k是允许的最大交易次数。我们需要遍历n天的价格,对于每一天需要遍历k次交易状态。
空间复杂度:O(k),使用了一个(k+2)×2的二维数组来存储状态。