[HOT 100] 0337. 打家劫舍 III

1. 题目链接


337. 打家劫舍 III - 力扣(LeetCode)

2. 题目描述


小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

3. 题目示例


示例 1 :

输入: root = [3,2,3,null,3,null,1]
输出: 7 
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

示例 2 :

输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

4. 解题思路


  1. 问题理解
    • 给定一棵二叉树,每个节点有一个价值。
    • 不能同时抢劫直接相连的两个节点(即抢劫了父节点就不能抢劫子节点,反之亦然)。
    • 目标是抢劫节点使得总价值最大。
  2. 动态规划思想
    • 对于每个节点,有两种选择:抢劫或不抢劫。
    • 如果抢劫当前节点,则不能抢劫其直接子节点。
    • 如果不抢劫当前节点,则可以自由选择是否抢劫子节点(取子节点抢劫或不抢劫的较大值)。
  3. 后序遍历(DFS)
    • 采用后序遍历(左右根)的方式处理每个节点,确保子节点的状态在处理父节点之前已经计算完成。
    • 每个节点返回一个数组 [rob, notRob],表示抢劫或不抢劫该节点时的最大收益。
  4. 状态转移
    • 抢劫当前节点rob = left[1] + right[1] + node.val(不能抢劫子节点)。
    • 不抢劫当前节点notRob = max(left[0], left[1]) + max(right[0], right[1])(可以自由选择子节点的状态)。

5. 题解代码


class Solution {
    public int rob(TreeNode root) {
        // 返回一个包含两个元素的数组,res[0]表示抢劫当前节点的最大值,res[1]表示不抢劫当前节点的最大值
        int[] res = dfs(root);
        // 最终结果是抢劫根节点和不抢劫根节点两种情况中的较大值
        return Math.max(res[0], res[1]);
    }

    // 深度优先搜索,返回一个包含两个元素的数组
    private int[] dfs(TreeNode node) {
        // 如果节点为空,返回[0,0](抢劫和不抢劫的收益都是0)
        if (node == null) {
            return new int[]{0, 0};
        }

        // 递归处理左子树
        int[] left = dfs(node.left);
        // 递归处理右子树
        int[] right = dfs(node.right);

        // 抢劫当前节点:不能抢劫直接子节点,所以取left[1]和right[1](即不抢劫子节点的情况)
        int rob = left[1] + right[1] + node.val;
        
        // 不抢劫当前节点:可以选择抢劫或不抢劫子节点,取两种情况中的较大值
        int notRob = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
        
        // 返回当前节点的两种情况的最大值
        return new int[]{rob, notRob};
    }
}


6. 复杂度分析


时间复杂度:O(n)

  • 每个节点仅被访问一次,每次访问执行常数时间操作。
  • n 为树中节点数量。

空间复杂度:O(n)

  • 递归调用栈的深度取决于树的高度,最坏情况下(树退化为链表)为 O(n)。
  • 每次递归调用返回的数组是常数空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值