1. 题目链接
2. 题目描述
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root
。
除了 root
之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root
。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
3. 题目示例
示例 1 :
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2 :
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
4. 解题思路
- 问题理解:
- 给定一棵二叉树,每个节点有一个价值。
- 不能同时抢劫直接相连的两个节点(即抢劫了父节点就不能抢劫子节点,反之亦然)。
- 目标是抢劫节点使得总价值最大。
- 动态规划思想:
- 对于每个节点,有两种选择:抢劫或不抢劫。
- 如果抢劫当前节点,则不能抢劫其直接子节点。
- 如果不抢劫当前节点,则可以自由选择是否抢劫子节点(取子节点抢劫或不抢劫的较大值)。
- 后序遍历(DFS):
- 采用后序遍历(左右根)的方式处理每个节点,确保子节点的状态在处理父节点之前已经计算完成。
- 每个节点返回一个数组
[rob, notRob]
,表示抢劫或不抢劫该节点时的最大收益。
- 状态转移:
- 抢劫当前节点:
rob = left[1] + right[1] + node.val
(不能抢劫子节点)。 - 不抢劫当前节点:
notRob = max(left[0], left[1]) + max(right[0], right[1])
(可以自由选择子节点的状态)。
- 抢劫当前节点:
5. 题解代码
class Solution {
public int rob(TreeNode root) {
// 返回一个包含两个元素的数组,res[0]表示抢劫当前节点的最大值,res[1]表示不抢劫当前节点的最大值
int[] res = dfs(root);
// 最终结果是抢劫根节点和不抢劫根节点两种情况中的较大值
return Math.max(res[0], res[1]);
}
// 深度优先搜索,返回一个包含两个元素的数组
private int[] dfs(TreeNode node) {
// 如果节点为空,返回[0,0](抢劫和不抢劫的收益都是0)
if (node == null) {
return new int[]{0, 0};
}
// 递归处理左子树
int[] left = dfs(node.left);
// 递归处理右子树
int[] right = dfs(node.right);
// 抢劫当前节点:不能抢劫直接子节点,所以取left[1]和right[1](即不抢劫子节点的情况)
int rob = left[1] + right[1] + node.val;
// 不抢劫当前节点:可以选择抢劫或不抢劫子节点,取两种情况中的较大值
int notRob = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
// 返回当前节点的两种情况的最大值
return new int[]{rob, notRob};
}
}
6. 复杂度分析
时间复杂度:O(n)
- 每个节点仅被访问一次,每次访问执行常数时间操作。
n
为树中节点数量。
空间复杂度:O(n)
- 递归调用栈的深度取决于树的高度,最坏情况下(树退化为链表)为 O(n)。
- 每次递归调用返回的数组是常数空间。