OpenCV中的图像基本操作--B站视频教程笔记(七)

本文介绍了如何利用OpenCV进行模板匹配,包括匹配方法的原理和实现,以及匹配多个对象的技巧。同时,详细讲解了直方图的概念,展示了如何计算图像的直方图,以及直方图均衡化和自适应直方图均衡化的效果。通过实例代码,读者可以深入理解计算机视觉中的这些关键概念。
摘要由CSDN通过智能技术生成

在学习B站教学视频的时候记录的笔记

OpenCV+TensorFlow】迪哥带你做项目!深度学习+计算机视觉实战 纯实战教学 技能点加满


7.1 模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度。这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

#模板匹配
img= cv2.imread('H:\Peronal\lena.jpg')
template = cv2.imread('H:\Peronal\\face.png',0)
h,w = template.shape[:2]

 左侧小图为face.png右侧大图为lena.jpg.假设在lena.jpg图像上分割出几个区域,然后找出这几个区域中跟face最像的那个区域。大致思路如下:从A到I每一个与face进行一次匹配,直至找到最为匹配的那个区域完成查找工作(图中的分割示意等分)。

那么每个区域与face如何判断匹配?最简单是每一个像素进行匹配,例如,首先进行(0,0)这个像素点进行比较,数值相同即为匹配。然后再比较(0,1)如此循环直至face的全部像素点都计算一遍。

最终会返回一个匹配结果:

A B ... E ... I

0% 0%... 100% ... 0%

由于匹配方法的不同,结果也不同。但含义是一致的。

  • TM_SQDIFF :计算平方不同,计算出来的值越小越相关

  • TM_CCORR:计算相关性,计算出来的值越大越相关

  • TM_CCOEFF:计算相关系数,计算出来的值越大越相关

  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0越相关

  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1越相关

  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1越相关

    公式:OpenCV: Object Detection

如图:

 处理过程:

template =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值