pytorch中next_functions

本文详细探讨了PyTorch中的next_functions机制,它是自动梯度计算的关键部分。通过理解next_functions,可以更好地掌握PyTorch的反向传播过程,从而实现高效且灵活的神经网络训练。
摘要由CSDN通过智能技术生成
import torch
import  torch.autograd as autograd
# Variables wrap tensor objects
x = autograd.Variable(torch.Tensor([1., 2., 3]), requires_grad=True)
# You can access the data with the .data attribute
#print(x.data)

# You can also do all the same operations you did with tensors with Variables.
y = autograd.Variable(torch.Tensor([4., 5., 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值