import torch
import torch.autograd as autograd
# Variables wrap tensor objects
x = autograd.Variable(torch.Tensor([1., 2., 3]), requires_grad=True)
# You can access the data with the .data attribute
#print(x.data)
# You can also do all the same operations you did with tensors with Variables.
y = autograd.Variable(torch.Tensor([4., 5.,
pytorch中next_functions
最新推荐文章于 2024-08-27 23:16:25 发布
本文详细探讨了PyTorch中的next_functions机制,它是自动梯度计算的关键部分。通过理解next_functions,可以更好地掌握PyTorch的反向传播过程,从而实现高效且灵活的神经网络训练。
摘要由CSDN通过智能技术生成