7-18 二分法求多项式单根(分数 20)

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
  • 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
  • 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a3​x3+a2​x2+a1​x+a0​在给定区间[a,b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a3​、a2​、a1​、a0​,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

问题分析:

二分法求多项式的根时有可能无法求出准确的值,然后我们只需要当区间的长度小于某一长度便认为区间的中点为多项式的一个根。其中二分法的步骤已经在问题中给出,最重要的在于区间的更新。

代码实现

#include<stdio.h>
double a3,a2,a1,a0;
double f(double a){
    return a3*a*a*a+a2*a*a+a1*a+a0;
}
int main(){
    double b,a,middle;
	int flag=0;
    scanf("%lf %lf %lf %lf",&a3,&a2,&a1,&a0);
    scanf("%lf %lf",&a,&b);
    while(b-a>0.0001){
        middle=(a+b)/2;
        if(f(a)*f(b)<0){
            if(f(middle)==0){
                printf("%.2lf",middle);
                flag=1;
                break;
            }else if(f(middle)*f(a)>0){
                a=middle;
            }else if(f(middle)*f(b)>0){
                b=middle;
            }
        }else if(f(a)*f(b)>0){
            break;
            flag=1;
        }else if(f(a)*f(b)==0){
            if(f(a)==0){
                printf("%.2lf",a);
                flag=1;
                break;
            }else if(f(b)==0){
                printf("%.2lf",b);
                flag=1;
                break;
            }
        }
    }
    if(flag==0){
    	 printf("%.2lf",middle);
	}
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值