数论中的十个基本概念

1. 整除

a , b ∈ Z a,b \in \rm Z a,bZ,其中 Z Z Z表示整数, a ≠ 0 a \neq 0 a=0,如果存在 q ∈ Z q \in \rm Z qZ使得 b = a q b=aq b=aq,则称 b b b可被 a a a整除,记作 a ∣ b a|b ab,并且称 b b b a a a的倍数, a a a b b b的约数或除数、因数。

正整数 n n n素数,当且仅当它不能被任何整数 d d d整除,其中 1 < d ≤ n 1<d\leq \sqrt n 1<dn .

m , n ∈ Z m,n \in Z m,nZ,若能同时整除 m m m n n n的整数只有 ± 1 \pm 1 ±1,则称 m m m n n n互素

2. 最大公约数

m m m n n n均为不为零的整数,在 m m m n n n的所有公约数中存在唯一的公约数 d > 0 d>0 d>0,使得 m m m n n n的任一公约数 e e e都整除 d d d,则 d d d称为最大公约数,记作 d = g c d ( m , n ) d=gcd(m,n) d=gcd(m,n)。两个数 m m m n n n互素,记作 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1

欧几里得算法是寻找两个整数 a a a b b b ( a > b ) (a>b) (a>b)的最大公约数 g c d ( a , b ) gcd(a,b) gcd(a,b)的常用方法,过程如下: g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)= gcd(b,a \bmod b) gcd(a,b)=gcd(b,amodb)eg: 525 525 525 778 778 778的最大公约数
778 = 1 × 525 + 253 ,      g c d ( 728 , 525 ) = g c d ( 525 , 253 ) 778 =1 \times 525 +253 ,\;\; gcd(728,525) = gcd(525,253) 778=1×525+253,gcd(728,525)=gcd(525,253) 525 = 2 × 253 + 19 ,      g c d ( 525 , 253 ) = g c d ( 523 , 19 ) 525 =2 \times 253+19 ,\;\; gcd(525,253) = gcd(523,19) 525=2×253+19,gcd(525,253)=gcd(523,19) 253 = 13 × 19 + 6 ,      g c d ( 523 , 19 ) = g c d ( 19 , 6 ) 253 =13 \times 19+6 ,\;\; gcd(523,19) = gcd(19,6) 253=13×19+6,gcd(523,19)=gcd(19,6) 19 = 3 × 6 + 1 ,      g c d ( 19 , 6 ) = g c d ( 6 , 1 ) 19 =3 \times 6+1 ,\;\; gcd(19,6) = gcd(6,1) 19=3×6+1,gcd(19,6)=gcd(6,1) 最后得到余数1,则 g c d ( 525 , 778 ) = 1 gcd(525,778)=1 gcd(525,778)=1,即 525 525 525 778 778 778互素。

3. 模运算

m ≠ 0 m \neq 0 m=0,若 m ∣ a − b m|a-b mab,即 a − b = k m a-b=km ab=km,则称 a a a同余于 b b b m m m,或 b b b a a a对模 m m m的剩余,记作 a ≡ b   m o d   m a \equiv b \bmod m abmodm上式也称为模 m m m的同余式,或简称同余式。由于 m ∣ a − b m|a-b mab等价于 − m ∣ ( a − b ) -m|(a-b) m(ab),因此 a ≡ b   m o d   m a \equiv b \bmod m abmodm等价于 a ≡ b   m o d   ( − m ) a \equiv b \bmod(-m) abmod(m)

模运算的性质

  • (1)自反性:对于任意的 a a a,总有 a ≡ a   m o d   m a \equiv a \bmod m aamodm
  • (2)对称性:如果 a ≡ b   m o d   m a \equiv b \bmod m abmodm,那么 b ≡ a   m o d   m b \equiv a \bmod m bamodm
  • (3)传递性:如果 a ≡ b   m o d   m a \equiv b \bmod m abmodm,且 b ≡ c   m o d   m b \equiv c \bmod m bcmodm,那么 a ≡ c   m o d   m a \equiv c \bmod m acmodm
  • (4)结合律: [ ( a   m o d   m ) ± ( b   m o d   m ) ]   m o d   m ≡ ( a ± b )   m o d   m [(a \bmod m) ± (b \bmod m)]\bmod m \equiv (a±b)\bmod m [(amodm)±(bmodm)]modm(a±b)modm [ ( a   m o d   m ) × ( b   m o d   m ) ]   m o d   m ≡ ( a × b )   m o d   m [(a \bmod m) \times (b \bmod m)]\bmod m \equiv (a \times b)\bmod m [(amodm)×(bmodm)]modm(a×b)modm
  • (5)分配律: [ ( a × b )   m o d   m + ( a × c )   m o d   m ]   m o d   m ≡ [ a × ( b + c ) ]   m o d   m [(a \times b)\bmod m+(a \times c)\bmod m] \bmod m \equiv [a \times (b+c)]\bmod m [(a×b)modm+(a×c)modm]modm[a×(b+c)]modm
  • (6)加法消除律:如果 ( a + b ) ≡ ( a + c )   m o d   m (a+b) \equiv(a+c) \bmod m (a+b)(a+c)modm,则 b = c   m o d   m b=c \bmod m b=cmodm
  • (7)乘法消除律:如果 ( a × b ) ≡ ( a × c )   m o d   m (a \times b)≡(a \times c) \bmod m (a×b)(a×c)modm,且 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则 b ≡ c   m o d   m b \equiv c \bmod m bcmodm

4. 逆元

对于非0、非 ± 1 \pm 1 ±1的整数 m m m,若 g c d ( a , m ) = 1 gcd(a,m) =1 gcd(a,m)=1,即 a a a m m m互素,则 a a a m m m的逆元存在。
且存在唯一整数 x ( 0 < x < m ) x(0<x<m) x(0<x<m),使 a x ≡ 1   m o d   m ax \equiv 1 \bmod m ax1modm记为 a − 1 ≡ x   m o d   m a^{-1} \equiv x \bmod m a1xmodm通常使用扩展的欧几里得算法:用欧几里得算法求出 a a a m m m的最大公约数,如果公约数是1,则逆元存在。通过反向迭代操作得到表达式 x a + y m = 1 xa+ym =1 xa+ym=1,从而得到 a a a m m m的逆元 x x x m m m a a a的逆元 y y y

eg: 25 25 25 31 31 31的逆元
∵ \because 31 = 25 × 1 + 6 , 25 = 4 × 6 + 1 31=25 \times 1+6, 25=4 \times 6+1 31=25×1+6,25=4×6+1 ∴ \therefore 1 = 25 − 4 × 6 = 25 − 4 × ( 31 − 25 ) = − 4 × 31 + 5 × 25 1=25-4 \times 6=25-4\times (31-25)=-4\times 31+5\times 25 1=254×6=254×(3125)=4×31+5×25因此, 25 25 25 31 31 31的逆元为 5 5 5 31 31 31 25 25 25的逆元为 − 4 + 25 = 21 -4+25=21 4+25=21

5. 欧拉函数

欧拉函数(Euler) φ ( n ) \varphi(n) φ(n)为对于一个正整数 n n n,与其互素且小于等于 n n n的正整数个数。

φ ( n ) \varphi(n) φ(n)具有如下性质:

  • 如果 p p p是素数,则 φ ( p ) = p − 1 \varphi(p) = p-1 φ(p)=p1

  • n = m 1 m 2 ,且 g c d ( m 1 , m 2 ) = 1 n=m_1m_2,且gcd(m_1,m_2)=1 n=m1m2,且gcd(m1,m2)=1,则 φ ( n ) = φ ( m 1 ) φ ( m 2 ) \varphi(n) = \varphi(m_1)\varphi(m_2) φ(n)=φ(m1)φ(m2)

  • 对于整数 n ≥ 2 n\ge 2 n2,不计次序, n n n具有唯一分解式: n = p 1 α 1 p 2 α 2 . . . p m α m n=p_1^{\alpha_1}p_2^{\alpha_2}...p_m^{\alpha_m} n=p1α1p2α2...pmαm其中 p 1 , p 2 , . . . . , p m p_1,p_2,....,p_m p1,p2,....,pm为两两不同的素数, α 1 ≥ 1 , 1 ≤ i ≤ m \alpha_1 \ge 1, 1 \le i \le m α11,1im,则 φ ( n ) = ( p 1 α 1 − p 1 α 1 − 1 ) ( p 2 α 2 − p 2 α 2 − 1 ) . . . . ( p m α m − p m α m − m ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p m ) \varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1-1})(p_2^{\alpha_2} - p_2^{\alpha_2-1})....(p_m^{\alpha_m} - p_m^{\alpha_m-m}) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_m}) φ(n)=(p1α1p1α11)(p2α2p2α21)....(pmαmpmαmm)=n(1p11)(1p21)...(1pm1)举例
    对于 n = 20 = 2 2 × 5 n=20=2^2 \times 5 n=20=22×5 φ ( 20 ) = φ ( 2 2 × 5 ) = ( 2 2 − 2 2 − 1 ) × ( 5 1 − 5 1 − 1 ) = 2 × 4 = 8 \varphi(20) = \varphi(2^2 \times 5) =(2^2-2^{2-1}) \times (5^1-5^{1-1}) = 2 \times 4 = 8 φ(20)=φ(22×5)=(22221)×(51511)=2×4=8

6. 欧拉定理

数论中的欧拉定理(Euler Theorem)又称费马-欧拉定理或欧拉函数定理。

对于任意整数 a , n a,n a,n,若 g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1,即 a a a n n n互素,则 a φ ( n ) ≡ 1   m o d   n a^{\varphi(n)}\equiv 1 \bmod n aφ(n)1modneg: 利用欧拉定理简化大指数的幂运算:计算 2 1000000   m o d   77 2^{1000000} \bmod 77 21000000mod77

由于 gcd ⁡ ( 2 , 77 ) = 1 \gcd(2,77)=1 gcd(2,77)=1,根据欧拉函数, φ ( 77 ) = φ ( 7 × 11 ) = φ ( 7 ) × φ ( 11 ) = 6 × 10 = 60 \varphi(77)=\varphi(7\times 11)=\varphi(7) \times \varphi(11) = 6 \times 10=60 φ(77)=φ(7×11)=φ(7)×φ(11)=6×10=60
根据欧拉定理 2 60   m o d   77 ≡ 1   m o d   77 2^{60}\bmod 77 \equiv 1 \bmod 77 260mod771mod77由于 1 , 000 , 000 = 16666 × 60 + 40 1,000,000=16666\times 60+40 1,000,000=16666×60+40因此 2 1000000   m o d   77 ≡    2 16666 × 60 + 40   m o d   77 ≡    ( 2 16666 × 60   m o d   77 ) ( 2 40   m o d   77 ) ≡    ( ( 2 60   m o d   77 ) 16666   m o d   77 ) ( 2 40   m o d   77 ) ≡    2 40   m o d   77 ≡    ( 2 10   m o d   77 ) 4   m o d   77 ≡    ( 2 3 2   m o d   77 ) 2   m o d   77 ≡    6 7 2   m o d   77 ≡ 23 \begin{aligned} 2^{1 000 000} \bmod 77 \equiv \; & 2^{16666\times 60+40}\bmod 77 \\ \equiv \; & (2^{16666\times 60}\bmod 77)(2^{40} \bmod 77) \\ \equiv \; & ((2^{60} \bmod 77)^{16666} \bmod 77)(2^{40} \bmod 77) \\ \equiv \; & 2^{40} \bmod 77 \\ \equiv \; & (2^{10} \bmod 77)^{4} \bmod 77 \\ \equiv \; & (23^{2} \bmod 77)^{2} \bmod 77 \\ \equiv \; & 67^{2} \bmod 77 \equiv 23 \\ \end{aligned} 21000000mod77216666×60+40mod77(216666×60mod77)(240mod77)((260mod77)16666mod77)(240mod77)240mod77(210mod77)4mod77(232mod77)2mod77672mod7723

7. 费马小定理

如果 p p p是一个素数,且 a a a是不能被 p p p整除的正整数,那么 a p − 1 ≡ 1   m o d   p a^{p-1}\equiv 1 \bmod p ap11modp或者 a p ≡ a   m o d   p a^{p}\equiv a \bmod p apamodp费马小定理是欧拉定理中 n n n为素数的情况。

8. 一次同余方程

如果 a , b a,b a,b都是整数, n n n是一个正整数,当 a   m o d   n ≠ 0 a \bmod n \neq 0 amodn=0时, a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn称为模 n n n的一次同余方程,或者线性同余方程。

一次同余方程 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn有解当且仅当方程 a x + n y = b ax+ny=b ax+ny=b有整数解,方程 a x + n y = b ax+ny=b ax+ny=b有整数解的充要条件是 gcd ⁡ ( a , n ) ∣ b \gcd(a,n)|b gcd(a,n)b

如果 x 0 x_0 x0是满足 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn的一个整数,即 a x 0 ≡ b   m o d   n ax_0 \equiv b \bmod n ax0bmodn,则满足 x ≡ x 0   m o d   n x\equiv x_0 \bmod n xx0modn的所有整数 x x x也能满足 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn,即包含 x x x的模 n n n同余类中的整数都满足 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn。包含 x x x的模 n n n同余类 [ x 0 ] [x_0] [x0]称为 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn的一个解,即同余方程的一个解包含一个类的所有整数。

同余方程 a x ≡ b   m o d   n ax \equiv b \bmod n axbmodn有解当且仅当 gcd ⁡ ( a , n ) ∣ b \gcd(a,n)|b gcd(a,n)b,并且,如果这个同余方程有解,则有 gcd ⁡ ( a , n ) \gcd(a,n) gcd(a,n)个不同的解。

9. 中国剩余定理

我国古代的《孙子算经》中提出了这样的问题:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”该问题可用一次同余方程组表示: { x ≡ 2   m o d   3 x ≡ 3   m o d   5 x ≡ 2   m o d   7 \begin{cases} x \equiv 2 \bmod 3 \\ x \equiv 3 \bmod 5 \\ x \equiv 2 \bmod 7 \end{cases} x2mod3x3mod5x2mod7中国剩余定理(孙子定理):设 m 1 , m 2 , … , m r m_1,m_2,…,m_r m1m2mr,是 r ≥ 2 r\ge 2 r2个两两互素的大于 1 1 1的整数,令 M = m 1 m 2 . . . m r M=m_1m_2...m_r M=m1m2...mr,则同余方程组 { x ≡ a 1   m o d   m 1 x ≡ a 2   m o d   m 2                    ⋮ x ≡ x r   m o d   m r \begin{cases} x \equiv a_1 \bmod m_1 \\ x \equiv a_2 \bmod m_2 \\ \;\;\;\;\;\;\;\;\; \vdots \\x \equiv x_r \bmod m_r \end{cases} xa1modm1xa2modm2xxrmodmreg: 我国古代数学家杨辉在1275年所写的《续古摘奇算法》有如下题目:二数余一,五数余二,七数余三,九数余四,问本数。

由题意得 { x ≡ 1   m o d   2 x ≡ 2   m o d   5 x ≡ 3   m o d   7 x ≡ 4   m o d   9 \begin{cases} x \equiv 1 \bmod 2 \\ x \equiv 2 \bmod 5 \\ x \equiv 3 \bmod 7 \\ x \equiv 4 \bmod 9 \end{cases} x1mod2x2mod5x3mod7x4mod9根据中国剩余定理, m 1 = 2 , m 2 = 5 , m 3 = 7 , m 4 = 9 ; a 1 , a 2 = 2 , a 3 = 3 , a 4 = 4 , M = 2 × 5 × 7 × 9 = 630 m_1=2,m_2=5,m_3=7,m_4=9;a_1,a_2=2,a_3=3,a_4=4,M=2 \times 5\times 7\times 9=630 m1=2m2=5m3=7m4=9a1a2=2a3=3a4=4M=2×5×7×9=630

M 1 = 630 / 2 = 315 , M 2 = 630 / 5 = 126 , M 3 = 630 / 7 = 90 , M 4 = 630 / 9 = 70 M_1=630/2=315,M_2=630/5=126,M_3=630/7=90,M_4=630/9=70 M1=630/2=315,M2=630/5=126M3=630/7=90M4=630/9=70

根据 315 b 1 ≡ 1   m o d   2 315b_1 \equiv 1\bmod 2 315b11mod2,解得 b 1 ≡ 1   m o d   2 b_1\equiv 1\bmod 2 b11mod2,同理有 b 2 ≡ 1   m o d   5 , b 3 ≡ 6   m o d   7 , b 4 ≡ 4   m o d   9 b_2\equiv 1\bmod 5,b_3\equiv 6\bmod 7,b_4\equiv 4\bmod 9 b21mod5,b36mod7,b44mod9

因此, x = 315 + 126 × 2 + 90 × 6 × 3 + 70 × 4 × 4 ≡ 157   m o d   630 x=315+126\times 2+90\times6\times3+70\times4\times4 \equiv157\bmod 630 x=315+126×2+90×6×3+70×4×4157mod630

10. 二次剩余和Blum整数

如果 p p p是素数,且 a < p a<p a<p,如果 x 2 ≡ a   m o d   p x^2 \equiv a \bmod p x2amodp有解,则称 a a a是对模 p p p的二次剩余。

不是所有的 a a a的值都满足这个特性。如果a是对模n的一个二次剩余,那么它必定是对模 n n n所有素因子的二次剩余。

例如 p = 7 p=7 p=7,二次剩余是 1 , 2 , 4 1,2,4 1,2,4 { 1 2 = 1 ≡ 1   m o d   7 2 2 = 4 ≡ 4   m o d   7 3 2 = 9 ≡ 2   m o d   7 4 2 = 16 ≡ 2   m o d   7 5 2 = 25 ≡ 4   m o d   7 6 2 = 36 ≡ 1   m o d   7 \begin{cases} 1^2 = 1 \equiv 1 \bmod 7 \\ 2^2 = 4 \equiv 4 \bmod 7 \\ 3^2 = 9 \equiv 2 \bmod 7 \\ 4^2 = 16 \equiv 2 \bmod 7 \\ 5^2 = 25 \equiv 4 \bmod 7 \\ 6^2 = 36 \equiv 1 \bmod 7 \\ \end{cases} 12=11mod722=44mod732=92mod742=162mod752=254mod762=361mod7
没有 x x x值可满足下列方程: { x 2 ≡ 3   m o d   7 x 2 ≡ 5   m o d   7 x 2 ≡ 6   m o d   7 \begin{cases} x^2 \equiv 3 \bmod 7 \\ x^2 \equiv 5 \bmod 7 \\x^2 \equiv 6 \bmod 7\end{cases} x23mod7x25mod7x26mod7所以, 3 , 5 , 6 3,5,6 3,5,6称为模 7 7 7的二次非剩余。

易证明,当 p p p为奇数时,模 p p p的二次剩余数目恰好是 ( p − 1 ) / 2 (p-1)/2 (p1)/2,且与其二次非剩余的数目相同。

如果 a a a是模 p p p的二次剩余,那么 a a a恰好有两个平方根:

  • 其中一个在 1 ∼ ( p − 1 ) / 2 1 \sim(p-1)/2 1(p1)/2 之间;
  • 另一个在 ( p + 1 ) / 2 ∼ ( p − 1 ) (p+1)/2 \sim (p-1) (p+1)/2(p1)之间。
    此外,这两个平方根中的一个也是模的二次剩余,被称为主平方根。

如果 n n n是两个素数 p p p q q q之积,那么模 n n n恰好有 ( p − 1 ) ( q − 1 ) / 4 (p-1)(q-1)/4 (p1)(q1)/4个二次剩余。如果 a a a是对模 n n n的一个二次剩余,那么它必定是对模 n n n的所有素因子的二次剩余。这是因为要成为模 n n n的平方,其余数必须有模 p p p的平方和模 q q q的平方。例如,模 35 35 35 11 11 11个二次余: 1 , 4 , 9 , 11 , 14 , 15 , 16 , 21 , 25 , 29 , 30 1,4,9,11,14,15,16,21,25,29,30 1,4,9,11,14,15,16,21,25,29,30。每一个二次剩余恰好有 4 4 4个平方根。

如果 p p p q q q是两个素数,且都是模 4 4 4 3 3 3的,那么 n = p × q n=p \times q n=p×q称为Blum 整数。如果 n n n是一个Blum整数,它的每一个二次剩余恰好有 4 4 4个平方根,其中一个也是模 n n n的二次剩余,称为主平方根。例如, 139 139 139 模$ 437$ 的主平方根是 24 24 24,其他三个平方根分别为 185 185 185 252 252 252 413 413 413

  • 10
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隐私无忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值