简介
当给予神经网络的语料信息不断增加时,网络的训练过程将越来越困难。可以利用量子神经网络来处理这些经典语料信息,加入其训练过程,并提高收敛精度。
数据操作
数据预处理
生成关于所需要处理语句的词典,并根据窗口大小来生成样本点。
数据编码
编码线路可由RX旋转门构成,RX螺旋门结构如下图所示:
Ansatz线路
简单的Ansatz线路的一个单元为一层 RY 门和一层 CNOT 门,整个线路由对此单元重复p次构成。
测量
第三维的数据如下产生:
一、3对应的二进制为00011;
二、测量量子线路末态对𝑍0𝑍1Z0Z1哈密顿量的期望值。
量子版词向量嵌入层
结合编码量子线路和待训练量子线路,以及测量哈密顿量,将num_embedding
个词嵌入为embedding_dim
维的词向量。
整个训练模型跟经典网络类似,由一个嵌入层和两个全连通层构成,此处的嵌入层是由量子神经网络构成。