组合保险策略及相应模拟测算工具----Discrete Hedging: Guaranteed CPPI Structures

         组合保险策略及相应模拟测算工具----Discrete Hedging: Guaranteed CPPI Structures

最近将 open code 稍作修改  做了一个CPPI模拟测算工具,http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do?objectId=3&objectType=Category

操作界面:

风险放大倍数、平滑因子、转换成本 可以调整


相关CPPI 结构知识(摘自 维基百科)

 

 

 

Discrete Hedging: Guaranteed CPPI Structures

 

 

 

 

 

 

 

1            Introduction...................................................................................................................................... 2

1.1       Discrete Hedging Risks......................................................................................................................... 2

1.2       CPPI Structures........................................................................................................................................ 3

1.3       Jump Diffusion............................................................................................................................................ 3

1.4       The Real Rate of Return...................................................................................................................... 4

2            Contract Specifications.......................................................................................................... 4

2.1       Trigger Level............................................................................................................................................ 4

2.2       Asset Allocation Table........................................................................................................................ 4

2.3       Effective Underlying Unit Value.................................................................................................... 4

2.4       Payment at Maturity............................................................................................................................ 5

2.5       Liquidity Features of the Underlying Fund............................................................................... 5

2.6       Features Not Dealt with by the Modelling............................................................................... 7

2.6.1         Uncertain Realised NAV Values........................................................................................................ 7

2.6.2         Different Purchase and Redemption Notice Dates........................................................................ 7

2.6.3         Different Borrowing and Lending Rates......................................................................................... 7

2.6.4         Investment Guidelines......................................................................................................................... 7

2.6.5         Termination Events.............................................................................................................................. 7

3            Market Data........................................................................................................................................ 7

4            Monte Carlo Pricing.................................................................................................................... 7

4.1       The Jump-Diffusion Process for At..................................................................................................... 8

4.2       The Outputs................................................................................................................................................ 8

5            References........................................................................................................................................... 9


 

1         Introduction

Mutual funds, hedge funds and funds of funds have a number of features that are markedly different to regular equity underlyings:

1.      They can only be traded at discrete times.  For example, mutual funds are often only tradable once a day.  Some hedge funds or funds of funds can only be traded on a weekly, or monthly basis.[1]

2.      Frequently notice has to be given before one intends to trade.  For example, 5 days notice has to be given before purchasing, while 30 days notice has to be given before selling the fund.

3.      One might agree on a value to trade, rather than a number of fund units to trade.

4.      When purchasing of the fund cash might have to be delivered several days before trading, while on redeeming a part of the investment in the fund, it might take several days to weeks for delivery of the proceeds.

5.      One might be limited in the volume that can be traded on a given day.

 

For pricing and risk management the first feature is frequently the most significant and is discussed below in section 1.1.  One of the more frequently used structures to reduce the risks carried by the issuer is the CPPI (constant-proportions-portfolio-insurance) structure (see section 1.2).  Only being able to trade at specific times raises the impact of sharp market moves – in the case of continuous hedging one can often hedge large up and down moves while they are occurring, whilst in the case of discrete hedging the full impact of large moves is experienced.  Consequently we have extended the stock evolution to include additional random jumps – this is discussed more fully in section 1.3.  The discrete nature also means that the relevant growth rate is not the risk-free rate, but rather the real rate of return – this is discussed more fully in section 1.4.

 

1.1       Discrete Hedging Risks

In a continuously tradable B&S world the fair price and the cost of the delta hedge are equal.  In the case of discrete hedging this is no longer the case.  It is simple to show that the discrete delta hedge might cost more than the equivalent continuous hedge.  Consider the hedging of a call option over a month where the price of the underlying rises steadily:

1.      In the case of continuous hedging one steadily buys more delta.

2.      In the case of discrete monthly hedging one can only increase delta at the end of the month, which means that one must buy the additional delta at the highest price over the month, rather than on the way up.

In the case of the price dropping continuously over a month the discrete delta also costs more as one is forced to sell at the lowest point. 

 

So when does the discrete case cost less than the continuous hedge?  Consider the above case, with the modification that the underlying goes up and then returns to its original level by the end of the month.  If one compares monthly hedging with bimonthly hedging we know that bimonthly hedging will cost something on the way up, and then something on the way down.  In contrast monthly hedging will be approximately free.

 

Considering all the possible paths one ends up with a distribution for the costs of the delta hedge.  The average of this distribution is the continuous B&S fair price.  The more frequent the re-hedging times, the narrower the distribution of delta hedging costs.  The main unhedgeable exposure is one’s gamma exposure; namely that one is limited in one’s ability to adjust the delta hedge.

 

A different view of the same problem is to consider a B&S world in which one considers a discrete path.  The volatility of the discrete path will be distributed around the B&S volatility.[2]  Indeed the distribution of option prices can be determined from this distribution of the discrete volatilities (see M. Kamal research paper).  One useful result is that the width of the distribution scales as Ödt, the discrete time-step (in case of a standard B&S assumption).

 

It is important to realise that this risk cannot be hedged.  One can be lucky and make a profit, or unlucky and make a loss with respect to the B&S ‘fair’ price.  Of course by taking sensible provisions with respect to the B&S ‘fair’ price the risk of loss for the bank can be significantly reduced.

 

1.2       CPPI Structures

CPPI structures are contracts in which the client carries much of the above discrete hedging risk.  In the simplest case, the complete notional is initially invested in the fund.  If the spot rises the holding is increased (i.e. levered) in a prescribed manner, while if the spot drops the leverage is reduced – all according to an allocation table.[3]  As the leveraging is prescribed the discrete hedging risk is completely borne by the client.

 

One problem with simple CPPI certificate-like structures is that the client might loose money.  This could be largely overcome by modifying the initial allocation and the leverage schedule, but this usually leads to relatively low participation rates (similar to standard capital protected notes, with call options).  However, a more frequent approach to overcome this risk is to have a trigger level, which if breached leads to the remaining holding being converted to cash for the rest of the contract’s life.  The trigger level is related to the discount factor in such a way that in most cases the amount of cash held will guarantee the return of the notional at maturity.  However, there remains a liquidity gap risk, said differently; the trigger level might be breached so rapidly (with respect to the available liquidity) that the investment can not be sold in time to guarantee the minimum amount of cash.  Consequently two extra contract features are introduced:

·         The prescribed allocation schedule leads to a rapid reduction of the investment (rapid increase in cash holding) as the trigger level is approached.  This means that the fraction of the initial investment that is exposed to the liquidity gap risk is reduced.

·         A gap provision shifts the trigger level above the discount factor by a few percent, thereby providing a larger buffer and thus further reducing the gap risk.

Even with these two features there is no firm guarantee of the return of the notional at maturity, so the issuer frequently offers a guarantee to the client, and thus carries this residual risk, himself.  Much of the modelling described in this document is related to understanding this risk.

 

1.3       Jump Diffusion

One of the main attractions of fund-of-funds is their low historic volatility.  This means that large moves tend to be rare-events, something Monte Carlo simulation is not suitable for.  However, it is exactly the consequences of these events that we are trying to understand.  One approach is to ramp up the volatility well above its historic levels, but this approach can significantly distort the overall simulation and should only be done with care.  Another approach is to introduce extra random jumps not contained in a lognormal model.  This extra component of the diffusion process is a random Poisson process, which is characterised by an expected jump frequency, an expected jump size that could be generalised to a random distribution about the expected jump size.

 

1.4       The Real Rate of Return

In the well-known Black and Scholes’ approach we eliminate the real rate of return, m, from the picture by requiring continuous dynamic delta hedging of the derivative product.  Consequently, the portfolio consisting in the derivative and its delta hedge grows with the risk-free rate.  If the liquidity is limited so that continuous hedging is no more possible, then the real rate of return becomes important again.

 

To see this, consider a position on an underlying that can be hedged once a month.  One can choose the delta hedge to be the present delta, or the delta one expects to have when one can hedge again, i.e. in one month’s time.  If the position has a non-zero gamma (and then, theta), then the two are different.  The amount they are different is partially determined by the expected change in the underlying spot, E[dS]:

 

       E[dS]  =  E[St+dt] - St =   St emdt - St   @   St mdt

 

In the case of continuous hedging, the next hedging opportunity is immediate (dt ® 0 ), thus allowing continuous dynamic delta-hedging, and so the removal of exposure to the real rate of return.

 

2         Contract Specifications

In this section we describe the features of a typical guaranteed CPPI contract.  We concentrate on the features included in the modelling and at the end briefly summarise the main features not dealt with in the modelling.  We also include a sub-section describing the liquidity features of the underlying fund.

 

2.1       Trigger Level

At any given time, t, before maturity, T, the trigger level, Lt, is given by:

 

       Lt   =   Zt  +  Ct           Eq. 2.1

 

where Zt is the prevailing discount factor from t to T, and Ct is the time-dependent gap provision given by:

 

             

 

X% is usually around 1%. This cushion level is increasing with time, because of the increase in the gamma risk when we get close to expiry.

 

2.2       Asset Allocation Table

The performance of the effective underlying Unit Value (before accounting for fees [see Eq. 2.2]), Ut, relative to its initial value, U0, is denoted by Pt = Ut / U0. The distance of the performance from the trigger level is given by Dt = Pt – Lt.

 

At any given time the fraction of the value invested in the underlying fund is denoted as Wt, which is uniquely determined from the allocation table that is effectively a piecewise constant function that maps Dt onto Wt.

 

2.3       Effective Underlying Unit Value

The effective underlying unit value, Ut, is related to its previous value, Ut-1, and present Net Asset Value (NAV) of the underlying fund, At, and the previous NAV of the underlying fund, At-1, as follows:

 

                    Eq.  2.2

 

Where Ft is the risk monitoring fee for the following period (typically about 1% p.a. and charged on a monthly basis).  This fee is proportional to Ut – it should be noted that Ft is unaffected by asianing.

Finally Bt is the cash holding and reflects either the non-invested cash or the borrowing for leverage.  It is determined as:

 

      

 

It should be remembered that this cost of borrowing and lending includes the cost due to payment lags for redemption and early payment for purchase (see subsection 2.5).

 

U0 = A0 initialises Eq. 2.2.

 

2.4       Payment at Maturity

If no trigger event occurs then the payment at maturity is:

 

      

 

while if a trigger event has occurred the payment at maturity is given by:

 

      

 

where PTE is the performance of the underlying unit value on the trigger event date, ZTE is the prevailing discount factor on the trigger event date, and UnpaidFeesTE are the remaining risk monitoring fees on the trigger event date.

 

2.5       Liquidity Features of the Underlying Fund

Many funds have restrictive trading rules – the rule of thumb is that the restriction is there to benefit the fund.  We list the four most important:

·         Trading is restricted to weekly, or maybe monthly dates (however, estimated Net Asset Values are often given more frequently).

·         Advance notice of purchase and sales must be given.  Usually more notice is required for selling rather than buying.

·         The volume traded on any one trading date might be limited – this can impact the initial delta hedge, or its sale at maturity.  The problem at maturity can partially be overcome by averaging the final spot, which spreads the sale of the delta hedge out over several dates.  The problem at start is less of a problem because (a) it is a purchase of the fund, and (b) the fund can be informed in advance of our intentions.

·         The volume bought or sold might be quoted in value rather than units.  The difference between the two is significant because of the notice period required.

 

In the picture below we illustrate the dates ‘associated’ with a given ‘Trading date’. 

·         An estimated NAV is reported by the fund.  On this date the delta position is determined.  Notice is given of one’s intention to purchase or redeem the fund.

·         For purchases the money is handed over on the purchase payment date (no interest is accrued). 

·         The NAV is quoted on the trading date.


 

·         Then come a series of redemption payment dates (only 2 are shown here).  On each of these dates a fraction of the amount redeemed is received (without interest).

Purchase Payment Date

 Time

Redemption Payment Date 1

Redemption Payment Date 2

Notice Date

Estimated NAV

Trading Date

Official NAV reported.

 

 

 

 

 

 

 

 

 


 

2.6       Features Not Dealt with by the Modelling

2.6.1        Uncertain Realised NAV Values

In reality the quoted NAV is not the actual trading value of a unit, which is only completely resolved in the days (weeks) following the trading date if an actual order was given.

2.6.2        Different Purchase and Redemption Notice Dates

Frequently more notice is required when redeeming the fund than when purchasing it.

2.6.3        Different Borrowing and Lending Rates

The cost of borrowing and lending are usually different (credit rating issue).

2.6.4        Investment Guidelines

The investment guidelines strictly control various aspects of the fund’s investment management, such as the maximal / minimal exposure to equities or emerging markets, correlation between strategies and volatility capping.  These guidelines are not included in modelling.

2.6.5        Termination Events

A number of events can lead to termination of the contract, for example breach of the investment guidelines, or reduction in liquidity.  This is not included in modelling.

 

3         Market Data

Given the lack of tradable instruments on the underlying funds, we make many assumptions about the market data.  Further, if there is any doubt, the assumptions nearly always tend to be conservative. Moreover, one can easily track the sensitivities with respect to non-hedgeable parameters and take that into account for both pricing and hedging.

1.      Volatility is assumed to be flat.  If it is available, a historical analysis of the fund’s NAV gives a range of volatilities.  Typically, the volatility chosen for pricing is towards the top of this range, while the volatility for hedging is lower.

2.      There are no dividends, but there are monitoring fees (Ft in Eq. 2.2).

3.      The real rate of return is estimated from historical data of the fund.

4.      The parameters for the jumps are estimated from historical data by looking at the moves (their size and frequency) which are too large to be considered compatible with the volatility otherwise exhibited.

 

4         Monte Carlo Pricing

The path-dependence of CPPI derivatives is strong, so Monte Carlo is the only tool that can price these options with all their bells and whistles; for example, in order to correctly account for the liquidity restrictions of the underlying fund.  However, the weaknesses of Monte Carlo should be remembered: while it is good at average properties, analysis relying on tail properties must be treated with caution, and it must be remembered that modifications which boost the importance of tails will most probably distort other features as well.

 

The basic procedure is simple: Monte Carlo paths for the underlying fund, At, are generated until maturity.  Equation 2.2 is then iteratively evolved to give the series for the underlying unit value, Ut.   At maturity the position is liquidated and the proceeds are returned.

 

More specifically: the set of dates for the simulation of At is every trading day and its associated notice day.  On every notice date the weight, Wt, is determined from the allocation table.[4]  On every trading date, this weight and the actual NAV are used to determine the effective underlying unit value Ut from Eq. 2.2, remember the cost of funding purchases and the lags in receiving redemption.[5]

 

4.1       The Jump-Diffusion Process for At

The standard lognormal diffusion process is augmented with a jump process modelled by a Poisson process.  A Poisson process is defined by a frequency (intensity) parameter, l, which determines the probability of an event in a short time as, ldt.  The total process for the evolution of At becomes:

 

      

 

where a single jump size, J, is assumed – this size could also be made to be random, but given all the other assumptions, it seems excessive to include even more unknowns (we use conservative assumptions).

Note the use of the adjusted real rate of return, m, which accounts for the drift effect of jumps:

 

      

 

4.2       The Outputs

The tool gives several outputs, coming from the Monte-Carlo simulations. The price gives the expected (discounted) value of the CPPI product. For a put, we give the price of the guarantee. For a call, we give the expected CPPI returns. Note that since we deal with the historical diffusion (and then, a drifting process), this value is not equal to the initial investment: it will be often slightly higher (thanks to the expected excess drift), even if the fees can lower it. From a theoretical point of view, this is compatible with the fact that, by dealing with the true probability, the important feature is the pair (expected returns vs. risk), and not only the price.

 

However, there is no really standard measure of the risk taken for derivative contracts. The VaR is not necessarily considering the tail events at their true value. This is why we give two different measures of risk to the user. The information is given in a histogram file (HISTOGRAM.txt), which can be retrieved on the Trade Spreadsheet.

 

The first one is the standard Value at Risk, based on the density distribution of the discounted flows, coming from the Monte-Carlo simulations. The second one is a weighted price distribution. Indeed, the risk aversion of the trader gives more value to potential losses than to potential gains. Instead of equally weighted probabilities, we can use a different pricing method: the more the loss, the more the weight.

 

Therefore, the VaR can actually be defined as the level such that: , and then:
,
whereas the other indicator is:

If we look at the upper tail (i.e. if the costs are higher than the average), Ci’ is higher than Ci. The second measure is therefore more conservative.

 

Since the distribution is given by a histogram, which synthesises the information on discrete points, the risk measure is sometimes slightly imprecise. You can choose the probability points that interest you (for the second measure only) under the “Std Deviation” cell. If you want the whole Monte-Carlo distribution (to manipulate the data by yourself), you shall type a negative number as a first point. The discounted prices for each trajectory are then filled in another output text file (namely, PRINT.txt).

 

5         References

·         Kamal, M., ‘When You Cannot Hedge Continuously: The Corrections to Black-Scholes’, Goldman Sachs Equity Derivatives Research.

·          



[1]  Indeed even this limited liquidity can be reduced at the fund’s discretion, but for our purpose this is usually viewed as an early termination event.

[2] See ‘Volatility Capping’ (Steiner, M.)

[3]  The client pays for the cost of leveraging or receives risk-free interest on non-invested cash.

[4]   In principle the weight determined on the notice date should come from the expected value of the estimated NAV on the next trade date, and the expected trigger level on the next trade date. 

[5]  At-1 in Eq. 2.2 should be understood as the NAV on the previous trade date.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 数字通信是一种离散时间方法。在数字通信中,信号和数据以离散的形式进行传输和处理,而不是连续时间的模拟信号。离散时间是指信号在时间上以离散的量进行采样,每个采样点的数值代表了信号在该点上的取值。这种离散方式使得数字通信具有许多优势。 首先,数字通信可以更好地处理和传输复杂的信号和数据。通过将连续信号进行采样和量化,可以将其转换为离散数据,从而方便存储、传输和处理。这使得数字通信可以在较小的频谱带宽内传输更多的信息。 其次,数字通信具有更好的抗干扰能力。由于离散时间信号的特性,可以采用编码和解码技术来保护信号免受噪声和干扰的影响。纠错编码和调制技术可以提高信号的可靠性和鲁棒性,使得信号在传输过程中能够正确地恢复。 此外,数字通信还可以实现灵活多样的信号处理和调制方式。通过数字信号处理技术,可以对信号进行滤波、调制、解调等操作,从而实现各种不同的通信需求。这种灵活性使得数字通信在现代通信系统中得以广泛应用,如移动通信、互联网通信等。 总而言之,数字通信作为一种离散时间方法,具有许多优势。它可以更好地处理和传输复杂信号和数据,具有较强的抗干扰能力,并且提供了灵活多样的信号处理和调制方式。在现代通信领域,数字通信已成为主流技术,推动了通信技术的不断发展和创新。 ### 回答2: 数字通信是一种离散时间方法。在数字通信中,原始信息通过将其转换为离散的数字信号来传输。这种离散化是通过在连续时间上采样和量化来实现的。离散时间途径在数字通信系统中具有很大的优势。 首先,离散时间方法更易于处理。在离散时间中,所有的信号和过程都是用离散的数值表示的,这使得数字通信系统的设计和实施更加简单和可靠。数字信号可以通过数字逻辑运算进行处理,例如加法、乘法和滤波,这些操作在离散时间中更容易实现。 其次,离散时间方法具有更好的鲁棒性。数字信号可以经受噪声、失真和干扰等扰动的影响而仍能保持稳定。这是因为数字信号可以通过各种技术进行纠错和修复。例如,使用纠错码可以检测和纠正传输中的错误,使接收者能够获得准确的信息。 此外,离散时间方法还具有更好的灵活性。数字通信系统可以通过改变采样率和量化级别来适应不同的要求。这使得数字通信系统能够适应不同的信道条件和带宽要求。此外,数字信号还可以通过数字信号处理算法进行处理,从而实现信号的无线传输、多址传输和频谱利用等技术。 综上所述,数字通信的离散时间方法是一种有效和灵活的方法。它具有简单性、鲁棒性和灵活性,可以满足不同的通信要求。离散时间方法在现代通信系统中得到了广泛的应用,并在通信技术的发展中起着重要的作用。 ### 回答3: 数字通信是一种离散时间方法。数字通信是指通过数字信号传输信息的一种通信方式。与模拟通信相比,数字通信在通信过程中将连续时间的信号经过采样和量化等处理,转换为离散时间的信号进行传输和处理。 离散时间是指时间轴上的取样点是离散的,即在某些特定的时刻对信号进行采样。采样过程中,对信号进行抽样,将连续时间的信号转换为离散时间的信号。离散时间的处理更加方便,可以使用数字技术进行处理和控制。 数字通信的离散时间方法在处理通信中的一些问题时尤为重要。通过将连续时间的信号转换为离散时间的信号,可以在信号传输和处理过程中减少误差和干扰的影响。离散时间的方法也可以提高通信系统的容错性和抗干扰能力。 离散时间的方法还可以方便地对数字信号进行编码和调制。编码是将信息转换为适合传输的信号形式,而调制是将数字信号转换为模拟信号进行传输。通过离散时间的处理,可以更加准确、高效地进行信号编码和调制。 总而言之,数字通信的离散时间方法是一种有效的通信方式。它通过将连续时间的信号转换为离散时间的信号进行传输和处理,可以提高通信系统的性能和可靠性。离散时间方法还方便了对数字信号的编码和调制,使得信息的传输更加准确、高效。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值