error来源于bias或者变量

mean:均值
variance:方差
N较小,则分散的比较开;越大则分散的越集中
计算variance:
bias和variance区别:
每个平行宇宙,抓到的宝可梦不一样,即使使用一样的函数,会得出来不同的model

比较简单的model,不太会收到data影响,所以variance就比较小

bias:

取值只能在function space里面取

比较简单的model:bias比较大,variance较小
比较复杂的model: bias比较小,variance较大
当bias太大:
1,增加更多feature,对于宝可梦cp值的case,可以增加种类,height,weight等feature。
2,令model更复杂,3次项变为5次项

当variance太大:
1,更多data
2,正则化,在f后加一个参数,越小越好,使f更smooth
如何选model?不要把验证集当作测试集用
可以把训练集分成训练+测试集

本文探讨了机器学习中模型选择的关键因素——偏差与方差之间的平衡。简单模型往往偏差较大但方差较小,而复杂模型则反之。当偏差过高时,可通过增加特征或提升模型复杂度来改善;若方差过大,则需要更多数据或正则化来降低过拟合。选择模型时,应避免将验证集视为测试集,合理划分训练和测试数据。
334

被折叠的 条评论
为什么被折叠?



