李宏毅2020ML——P4模型误差来源

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
假设这里有多个平行宇宙,每个空间里都在用10只宝可梦的data去找在这里插入图片描述,由于不同宇宙中宝可梦的data是不同的,因此即使使用的是同一个model,最终获得的在这里插入图片描述都会是不同的
在这里插入图片描述
在这里插入图片描述

variance

在这里插入图片描述
在这里插入图片描述

那为什么比较复杂的model,它的散布就比较开呢?比较简单的model,它的散布就比较密集呢?

在这里插入图片描述

Bias

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Bias vs Variance

由前面的讨论可知,比较简单的model,variance比较小,bias比较大;而比较复杂的model,bias比较小,variance比较大
在这里插入图片描述

必须要知道自己的error主要来自于哪里

你现在的问题是bias大,还是variance大?
当你自己在做research的时候,你必须要搞清楚,手头上的这个model,它目前主要的error是来源于哪里;你觉得你现在的问题是bias大,还是variance大

你应该先知道这件事情,你才能知道你的future work,你要improve你的model的时候,你应该要走哪一个方向
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

通过regularization优化model的过程

在这里插入图片描述
1、蓝色区域代表最初的情况,此时model比较复杂,function set的space范围比较大,包含了target靶心,但由于data不够,在这里插入图片描述比较分散,variance比较大

2、红色区域代表进行regularization之后的情况,此时model的function set范围被缩小成只包含平滑的曲线,space减小,variance当然也跟着变小,但这个缩小后的space实际上并没有包含原先已经包含的target靶心,因此该model的bias变大

3、橙色区域代表增大regularization的weight的情况,增大weight实际上就是放大function set的space,慢慢调整至包含target靶心,此时该model的bias变小,而相较于一开始的case,由于限定了曲线的平滑度(由weight控制平滑度的阈值),该model的variance也比较小

上述的1、2、3步骤,不断地调整regularization的weight,使model的bias和variance达到一个最佳平衡的状态(可以通过error来评价状态的好坏,weight需要慢慢调参)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值