Stata:Bootstrap 简介

本文介绍了Bootstrap在Stata中的应用,包括有放回抽样和标准差与标准误的概念。通过实例展示了如何使用Stata进行Bootstrap程序编写,如OLS回归的RMSE标准误和VIF的Bootstrap估计。此外,提供了相关参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者: 吴雄(湘潭大学),童天天(中南财经政法大学)
连享会
Source: The Bootstrap in Stata

原文链接: 连享会-Bootstrap简介


1. Bootstrap 简介

bootstrap 是一种崭新的增广样本统计方法,为解决小样本问题提供了很好的思路。它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。对于回归模型:对于线性回归模型:

y t = X t β + u t , E ( u t ∣ X t ) = 0 ,   E ( u s u t = 0 )   ∀   s ≠ t y_t = X_t β+u_t, \\ E(u_t|X_t)=0,\ E(u_s u_t=0) \ ∀\ s≠t yt=Xtβ+ut,E(utXt)=0, E(usut=0)  s=t

可以通过多种方法来建立 bootstrap 的数据生成过程 (DGP) 。所谓的 bootstrap DGP 是对未知的 「真实 DGP」的一种估计。如果 bootstrap DGP 在某种意义上接近真实的 DGP,那么由 bootstrap DGP 生成的数据将与真实 DGP 生成的数据相似(如果已知的话)。如果是这样,则进行模拟使用 bootstrap DGP 获得的 P 值与真实 P 值足够接近,可以进行准确的推理。

Bootstrap 的基本思想是:如果 观测样本 是从母体中随机抽取的,那么它将包含母体的全部的信息,那么我们不妨就把这个观测样本视为 “总体”。可以简单地概括为:既然样本是抽出来的,那我何不从样本中再抽样。

具体而言,Bootstrap 的第一步是生成一系列 bootstrap 经验样本 (Empirical Sample) (有时也被形象地称为 「伪样本」),每个样本都是初始数据的一次有放回抽样。通过对 经验样本 的计算,获得统计量的分布。例如,要进行 1000 次 bootstrap,求平均值的置信区间,可以对每个经验样本 计算平均值。这样就获得了 1000 个平均值。对这 1000 个平均值的分位数进行计算, 即可获得置信区间。已经证明,在初始样本足够大且初始样本是从母体中随机抽取的情况下,bootstrap 抽样能够无偏接近总体的分布。

Bootstrap 的基本步骤如下:

  • Step 1: 采用有放回抽样方法从原始样本中抽取一定数量的子样本。
  • Step 2: 根据抽出的样本计算想要的统计量。
  • Step 3: 重复前两步 K 次,得到 K 个统计量的估计值。
  • Step 4: 根据 K 个估计值获得统计量的分布,并计算置信区间。

1.1 有放回抽样

所谓 「有放回抽样」 (Samping with replacement) 指的是在逐个抽取个体时,每次被抽到的个体放回总体中后,再进行下次抽取的抽样方法。

举个例子,对于由 0.10.3 这两个数字构成的观测样本而言, 记为 S 0 = ( 0.1 , 0.3 ) S_0 = (0.1, 0.3) S0=(0.1,0.3)。则采用有放回抽样 (Bootstrapping),可以得到如下三种不同的经验样本: S 1 B S = ( 0.1 , 0.1 ) S_1^{BS} = (0.1,0.1) S

Stata中,bootstrap是一种通过重复抽样来估计统计量的方法。通过生成多个bootstrap样本,可以获得统计量的抽样分布,进而计算标准误和置信区间。可以使用自带的bootstrap命令来进行bootstrap分析,也可以自行编写bootstrap程序。 例如,在回归分析中,可以使用bootstrap来估计均方根误差 (rmse) 的标准误。通过使用nlsw88.dta数据集中的自变量(如年龄、种族、婚姻状况和工作经验)对因变量(妇女工资)进行回归分析,并使用bootstrap进行重复抽样,可以得到rmse的标准误。在Stata中,可以使用自带的bootstrap命令并指定重复次数和随机种子数来完成这个过程。 另外,如果Stata的自带bootstrap命令无法满足特定的需求,也可以自行编写bootstrap程序。编写bootstrap程序可以灵活地控制抽样过程,并计算所需的统计量。根据不同的需要,可以使用不同的Stata命令和语法来实现。 综上所述,Stata中的bootstrap方法可以通过自带的bootstrap命令或自行编写bootstrap程序来进行分析,并获得所需统计量的标准误和置信区间。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [StataBootstrap 简介](https://blog.csdn.net/arlionn/article/details/100777004)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Stata:Bootstrap简介](https://blog.csdn.net/arlionn/article/details/119460083)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值