杨 鑫 (南京大学),njuyangxin@smail.nju.edu.cn
秦利宾 (厦门大学),qlb150@163.com
连玉君 (中山大学),arlionn@163.com
扫码查看连享会最新专题、公开课视频和 100 多个码云计量仓库链接。
连享会 - Stata 暑期班
线上直播 9 天:2020.7.28-8.7
主讲嘉宾:连玉君 (中山大学) | 江艇 (中国人民大学)
课程主页:https://gitee.com/arlionn/PX | 微信版
目录
1. 引言
标准误在统计推断中发挥着至关重要的作用,直接影响着系数的显著性和置信区间,并最终影响到假设检验的结论。因此,正确地估计标准误在实证分析的过程中显得尤为重要。当干扰项满足「独立同分布 (iid)」 条件时, OLS 所估计的标准误是无偏的。但是当误差项之间存在相关性时,OLS 所估计的标准误是有偏的,不能很好地反映估计系数的真实变异性 (Petersen, 2009),故需要对标准误进行调整。在多种调整标准误的方式中,「聚类调整标准误 (cluster)」是一种有效的方法 (Petersen, 2009)。
本文主要对聚类调整标准误的原理及其在 Stata 中的具体应用进行简要介绍,包括不同类型的模型中进行「一维聚类调整标准误」和「二维聚类调整标准误」的操作方法。对于该方法更深入的了解,可参考 Petersen (2009)、Thompson (2011)、 Cameron and Miller (2015)、 Abadie et al. (2017) 、Gu and Yoo (2019)等文献。在文章末尾,还对常见的与标准误相关的问题进行了探讨,以便加深对相关内容的理解。
2. 认识标准误
2.1 什么是标准误
为了简便,以仅含有一个非随机解释变量,且不含有截距项回归模型为例予以说明,具体如下:
y i = β x i + u i ( 1 ) y_{i}=\beta x_{i}+u_{i} \quad (1) yi=βxi+ui(1)
其中, i = 1 , … , N i=1, \ldots, N i=1,…,N, E [ u i ] = 0 \mathrm{E}\left[u_{i}\right]=0 E[ui]=0。
采用 OLS 方法进行估计,系数的估计量可表示为:
β ^ = ∑ i x i y i / ∑ i x i 2 ( 2 ) \hat{\beta}=\sum_{i} x_{i} y_{i} / \sum_{i} x_{i}^{2} \quad (2) β^=i∑xiyi/i∑xi2(2)
将式 (2) 中的 y i y_i yi 用式 (1) 替换,整理得:
β ^ − β = ∑ i x i u i / ∑ i x i 2 ( 3 ) \hat{\beta}-\beta=\sum_{i} x_{i} u_{i} / \sum_{i} x_{i}^{2} \quad (3) β^−β=i∑xiui/i∑xi2(3)
系数方差的一般形式可以表示为:
V [ β ^ ] = E [ ( β ^ − β ) 2 ] = V [ ∑ i x i u i ] / ( ∑ i x i 2 ) 2 ( 4 ) \mathrm{V}[\hat{\beta}]=\mathrm{E}\left[(\hat{\beta}-\beta)^{2}\right]=\mathrm{V}\left[\sum_{i} x_{i} u_{i}\right] /\left(\sum_{i} x_{i}^{2}\right)^{2} \quad (4) V[β^]=E[(β^−β)2]=V[i∑xiui]/(i∑xi2)2(4)
若误差项间不相关,则 V [ Σ i x i u i ] \mathrm{V}\left[\Sigma_{i} x_{i} u_{i}\right] V[Σixiui] 可以表示为:
V [ ∑ i x i u i ] = ∑ i V [ x i u i ] = ∑ i x i 2 V [ u i ] ( 5 ) \mathrm{V}\left[\sum_{i} x_{i} u_{i}\right]=\sum_{i} \mathrm{V}\left[x_{i} u_{i}\right]=\sum_{i} x_{i}^{2} \mathrm{V}\left[u_{i}\right] \quad (5) V[i∑xiui]=i∑V[xiui]=i∑xi2V[ui](5)
- 进一步,若「同方差」,则 V [ u i ] = σ 2 \mathrm{V}\left[u_{i}\right]=\sigma^{2} V[ui]=σ2,式 (4) 可以表示为:
V [ β ^ ] = σ 2 / ∑ i x i 2 ( 6 ) \mathrm{V}[\hat{\beta}]=\sigma^{2} / \sum_{i} x_{i}^{2} \quad (6) V[β^]=σ2/i∑xi2(6)
- 若「异方差」,由于 E [ u i ] = 0 \mathrm{E}\left[u_{i}\right]=0 E[ui]=0,则 V [ u i ] = E [ u i 2 ] \mathrm{V}\left[u_{i}\right]=\mathrm{E}\left[u_{i}^{2}\right] V[ui]=E[ui2],式 (4) 可以表示为:
V [ β ^ ] = ( ∑ i x i 2 E [ u i 2 ] ) / ( ∑ i x i