全文阅读:https://www.lianxh.cn/news/8491785f3a1f7.html
目录
匹配是研究处理效应的常见工具,本文总结了常见的匹配方法,并在第三部分给出 Stata 模拟以比较不同的匹配方法的优劣。
1. 单变量匹配 uni-variate match
单变量匹配的方法有精确匹配、粗糙精确匹配,k-近邻匹配和半径 (卡尺) 匹配。
1.1 精确匹配 exact match
顾名思义,当且仅当两个观测值的匹配变量相等时匹配成功。
1.2 粗糙精确匹配 coarsened exact match
粗糙精确匹配用途广泛,通常要求匹配变量是分类变量。比如公司金融中同行业的公司,又比如教育经济学中在同一个班的同学。粗糙精确匹配可以轻松的推广到多变量匹配的情形,如同行业同年度的公司,同班同性别的同学。
1.3 k-近邻匹配 k-nearest neighbor match
k-近邻匹配要求匹配变量是距离,它选取距离最近的 k 个观测值作为对照组。
1.4 radius (caliper) match
k-近邻匹配要求匹配变量也是距离,它事先设定半径 (上下半径可以不同),找出设定范围内的全部观测值作为对照组。显然,随着半径的降低,匹配要求也更趋严格。
2. 多变量匹配 multi-variate match
多变量匹配的核心思路是降维 (dimension reduction),将多变量降维为距离或得分,然后再运用单变量匹配的方法。多变量匹配的方法有欧氏距离、百分等级、马氏距离和倾向得分匹配等。
为能直观的图示,下文全部示例仅考虑双变量 (平面) 的情形。