全文阅读:https://www.lianxh.cn/news/4c08fce6f3327.html
目录
Source: Luciano Lopez, Sylvain Weber, 2017, Testing for Granger Causality in Panel Data, Stata Journal, 17(4): 972–984. -PDF-
随着面板数据库规模的扩大,围绕面板数据因果关系的理论也迅速发展。面板数据正从具有大样本量( N )和较短时间维度( T )的微观面板数据转变为到具有大样本量( N )和长的时间维度(T)的宏观面板数据。在这种情况下,就需要注意时间序列计量经济学的经典问题,即(非)平稳性和(非)因果关系。
在本文中,我们介绍了社区贡献的外部命令 xtgcause
,它实现了 Dumitrescu 和 Hurlin (2012) 提出的面板数据中 Granger 因果关系的检验过程。
xtgcause
通过最小化 Akaike 信息准则 (AIC)、贝叶斯信息准则 (BIC) 和 Hannan-Quinn 信息准则 (HQIC) 来选择模型中的滞后阶数,同时,它提供了 bootstrap 方法来计算 p 值和临界值。