Stata:Logit模型评介

原文链接:https://www.lianxh.cn/news/011888bd49e07.html

目录

前期相关推文

原文:Logit 模型评介: Logit 模型的好处

Source 1: In Defense of Logit-Part 1
Source 2: In Defense of Logit-Part 2

在最近的一篇 博文 中,Paul von Hippel 对他之前关于线性概率模型的论点进行了扩展,他认为:在很多情况下,线性概率模型(通过普通最小二乘估计)比 Logit 回归模型更可取。并且在他发表的两篇文章中,von Hippel 提出了以下三个要点:

  1. 在 0.20 到 0.80 的预测概率区间内,线性概率模型与 Logit 模型非常相近。即使在这个范围之外,如果区间很窄线性概率模型也可能做得很好。
  2. 相对于概率函数比来说,人们更容易理解概率变化之比例。
  3. OLS 回归比 Logit 回归运行快得多。

虽然我同意他的这些观点但是在绝大多数实际应用中,我依旧更喜欢使用Logit回归。在我2015年4月的文章中,我讨论了逻辑回归的一些特性,正因为这些特性使得它比其他非线性替代方法(如 probit 或互补对数)更具吸引力。但我没有将逻辑模型与线性概率模型进行比较。下面是我对 von Hippel 论点的看法,以及我为什么更喜欢 Logit 回归的原因。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值