logit 系数显著性和边际效应显著性可能出现不一致的现象,比如logit系数显著,而边际效应并不显著的问题,从技术上来讲,这是有一定合理性的。
某一变量x边际效应的结果并不是唯一确定的,取决于这一变量x的分布,每一个范围内的x都有一个边际效应,最后的边际效应是这些的加权平均,所以边际效应是系数的非线性函数,所以会存在显著性上的差异。
最后怎么确定呢?我认为调整模型的时候以系数的显著性为准,因为对于非线性模型,边际效应必须以预测变量的特定值(或预测变量分布的平均值)为条件,并且可以有很大差异,而回归系数是无条件的。因此,回归系数与与该变量相关的所有无限多边际效应之间没有必要的一致性。
图片来源于https://www.statalist.org/forums/forum/general-stata-discussion/general/1329201-marginal-effects-significance-vs-original-model-effects-significance/page2