ES期望损失:Stata及Python实现

本文探讨了ES(期望损失)模型,作为VaR的补充,它能度量投资组合尾部风险并提供更全面的风险评估。文章介绍了ES的起源、发展,以及在金融机构中的应用,包括Python和Stata的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接: https://www.lianxh.cn/news/5e74f7966cf51.html

目录

1. ES (期望损失) 简介

1.1 引言

在 「VaR 风险价值: Stata 及 Python 实现」 一文中,我们介绍了 VaR 模型 (Value at Risk 风险价值)。该模型回答了金融机构普遍关心的一个重要问题:「在一定概率的情形下,金融机构投资组合的价值在未来一定时间内最多可能损失多少」。

「一定概率」指的是一个 0% 到 100% 之间的数值,0% 即不可能发生,100% 即一定发生。我们常用的有 1%、5%(对应置信度即为 99%、95%),虽然 1% 在数值上已经比较小,但实际还隐藏着如 0.01%、0.0001% 等更为「极端」的情况,公司发生这类损失的概率极小,但损失极大,这类损失事件一旦发生,将对公司造成极大的影响,这就是风险管理中常说的尾部风险。

VaR 的局限性导致其不具备度量投资组合尾部风险的能力,它将损失可能发生的概率限定为一个值,因此低估了实际的市场风险。此外,在采用 VaR 确定监管资本要求时,监管者发现了无法捕获「厚尾风险」等诸多缺陷。若要度量投资组合损失超过 VaR 损失时所遭受的平均损失程度,更为准确地进行市场风险管理,就需要通过 ES(Expected Shortfall 期望损失)模型来实现。

1.2 起源与发展

ES 起源于国外学者对于风险管理计量方法的探索,研究总结发现,VaR 由于其本身的局限性,无法度量尾部风险,低估了实际的市场风险,其性质也并不完备。

ES 最初由国外学者 Philippe Artzner 等人于 1999 年提出,它的出现就是为了完善和提升当前以 VaR 模型为主流的市场风险度量方法,弥补 VaR 模型的不足。理论一出现就得到了学者的广泛关注,各类应用研究层出不穷,很快由学界传播到业界,进而引起了监管机构的重视。

巴塞尔银行委员会(Basel Committee on Banking Supervision)近年来修正了市场风险管理框架协议,经过多次征求意见和修改调整,最终于 2016 年 1 月 14 日颁布了最新的「市场风险最低资本金要求」,「要求」中将市场风险内部模型法计量测度从 VaR 转变为对资本金要求更为严格且符合一致性风险测度的 Expected Shortfall,提出了一系列新的计算标准,并规定这一转变的于 2019 年 1 月 1 日起实施。

从巴塞尔委员会的风险管理框架协议内容的转变,我们可以得知监管机构对待风险管理的态度和发展方向,也可以再次认证 ES 模型在风险管理中的重要性。

原文链接: https://www.lianxh.cn/news/5e74f7966cf51.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值