全文阅读:PLS+SEM:基于偏最小二乘法的结构方程模型-plssem-T330| 连享会主页
目录
1. 简介
本文拟介绍基于偏最小二乘法的 SEM (PLS-SEM) 的 plssem
命令。该命令是由 Venturini and Mehmetoglu (2019) 编写。与传统统计方法(如线性回归,多元回归等)不同,在更广泛的意义上, SEM 可以作为一个联立多方程的估计模型,在方程的两边可以包括单项或/和多项变量,并有助于对非常复杂的模型进行适当而完整的中介效应分析。在文献中,目前存在着许多关于基于协方差的 SEM(COV-SEM)和 PLS-SEM 优缺点的争论 (如 Henseler et al., 2014), PLS-SEM 通常被认为是一种与 COV-SEM 的互补方法 (Jöreskog, 1969; Wold, 1975)。根据 Hair et al. (2017) 的建议,一般在以下情况下使用 PLS-SEM :
- 目标是预测关键目标结构
- 形式化度量的构造是结构模型的一部分
- 结构模型是复杂的,包括许多指标/结构
- 样本量小
- 计划是在进一步分析中使用潜在变量分数