前面给大家写的关于结构方程模型的文章都是基于变量的方差协方差矩阵来探讨变量间关系的,叫做covariance-based SEM,今天给大家介绍一下另外一个类型的SEM,叫做偏最小二乘结构方差模型。一般来讲covariance-based SEM大家会用的更多,但是了解一下PLSSEM也挺好,所以本篇文章肯定依然值得您收藏。
它两的区别在哪?
Whereas CBSEM estimates model parameters so that the discrepancy between the estimated and sample covariance matrices is minimized, in PLS path models the explained variance of the endogenous latent variables is maximized by estimating partial model relationships in an iterative sequence of ordinary least squares (OLS) regressions.
CBSEM是让理论和数据吻合的原则来估计相应参数的,我们通过看模型的拟合优度可以知道我们设定的理论和收集来数据是不是吻合,从而判断理论是不是符合实际,是不是站得住脚,是一种非常典型的验证性思维;而PLSSEM则更强调解释更多因变量(内生变量)的变异,所以如果你做研究的主要目的不是要验证一个理论,就是说你对潜变量的测量和变量关系的理论结构已经有十足的把握,主要目的是探讨哪些外生变量是因变量的影响因素,这个时候PLSSEM相对来讲就更加适合。并且,PLS对数据分布没有要求,所以相对于CBSEM来讲它又被称为软结构方程模型。
PLSSEM本质上是通过循环迭代各个潜变量的权重的方法来估计模型参数的,它期望通过迭代达到解释因变量变异最大。所以一个完整的PLSSEM包括3个部分,1.测量模型,2.结构模型,还有一个叫加权策略weighting scheme,加权策略是PLSSEM独有的。
PLS path models consists of three components: the structural model, the measurement model and the weighting scheme.
与CBSEM不同,PLSSEM的测量模型又可以分为两种,一种是reflective measurements,叫做反映型测量模型,另外一种叫做构成型测量模型formative measurements
A model with all arrows pointing outwards is called a Mode A model – all LVs have r