SmartPLS 4 | PLS-SEM模型构建+分析步骤

Version:4.1.1.1

接下来是详细版的模型构建+分析步骤教程

目录

模型构建

开始创建

构建模型

快捷改变题项(观测变量)的上下左右位置

显示/隐藏题项(观测变量)

潜变量的命名

反映型变量/形成型变量的转变操作

​模型分析

PLS-SEM algorithm

Bootstrapping


模型构建

开始创建

有三种方法进入创建模型界面。

方法①:从“Create model”这里开始构建模型,需要自己选择构建模型的类型。

方法②:右键点击对应项目文件夹,选择要构建的模型类型。

方法③:点击模型上方的图表。

从上面三个方法任意选择一种,给模型命名后进入模型构建界面。

构建模型

首先认识一下界面。

创建模型只需选中左侧因子,拖拽至右侧即可。

拖拽至右侧后,填入潜变量的命名,点击ok,一个潜变量就创建好了。

按照这个步骤将所需的变量都拖拽过来。

在上方选择“Connect”按钮,为变量添加连线。

连线只需点击自变量(连线的起始变量),鼠标按住不放,拖拽到因变量(连线的结束变量),放开鼠标,连线就完成了。

连线完成后如图所示。

快捷改变题项(观测变量)的上下左右位置

①潜变量为红色表示没有与其他变量连线,点击选中潜变量(SE)后,右侧出现编辑图标,可以快捷改变题项(SE1、SE2)的上下左右位置。

改变题项(观测变量)的上下左右位置也可以通过右键点击潜变量进行设置。

显示/隐藏题项(观测变量)

右键点击潜变量。

隐藏题项:“Hide indicators”

显示题项:“Show indicators”

潜变量的命名

①通过右键点击潜变量,选择“rename”进行重命名。

双击潜变量,可以改变潜变量在模型图中的命名及在结果汇报中的命名显示。(题项/观测变量操作相同,双击黄色的题项即可)

Caption in model:潜变量在模型图中显示的命名。修改这一项后“Caption in report”的命名也会同时改变。

Caption in report:潜变量在结果汇报中显示的命名。修改这一项后“Caption in model”的命名不会改变。

(题项/观测变量的命名操作同上)

反映型变量/形成型变量的转变操作

 ①双击潜变量,选择测量模型的类型。

反映型(reflective):由潜变量指向题项(观测变量)。

形成型(formative):由题项(观测变量)指向潜变量。

②右键点击潜变量

点击“Invert measurement model”,快捷转变潜变量与观测变量的指向。


模型分析

PLS-SEM algorithm

点击上方“calculate”,选择“PLS-SEM algorithm”,开始分析。

“PLS-SEM algorithm”运行结果主要包括:

①测量模型的因子载荷(factor/outer loadings)、信效度、HTMT、Fornell-Larcker矩阵等

②结构模型中的R方、f方、CFI、SRMR值等

③方差膨胀因子(VIF),用于多重共线性检验

一般按照默认的设置进行运行。

分析完成后会自动打开结果汇报(上图中“Start calculation”上勾选了“Open report”)。

在此界面不可以修改模型。

PLS算法计算出来的数据可以从左侧点击进入查看。

接下来继续介绍报告中可以查看的其他指标/数据。

关于分析报告导出:

SmartPLS提供了很方便的结果导出功能:

①从上方“Excel”/“HTML”可以选择导出分析报告到Excel或网页。

②在模型图板块右键点击空白部分可以选择导出模型图的PNG文件。

从PLS算法结果报告返回后是如下页面。

注意:在这个界面是可以修改模型的,也可以选择修改模型后SmartPLS是否重新自动运行所选择的分析算法(左下角“recalculate automatically”)。

Bootstrapping

点击上方“calculate”,选择“Bootstrapping”,开始分析。

“Bootstrapping”主要作用是用于计算路径的显著性。

以下是运行设置,运行设置会影响显著性计算结果。

  • Subsamples:运行次数在论文中一般为1000次或5000次。
  • Test type:

        ①Two tailed(双尾检验):如果没有明确方向,或者想同时考虑正负两种可能性,就用双尾检验。

        ②One tailed(单尾检验):当研究者有明确的方向性假设时,比如理论预测变量A对变量B有正向影响,这时候应该用单尾检验。

        【小tips:如果双尾检验不显著,可以尝试单尾检验】

分析结果报告如下所示。

导出操作同PLS-SEM algorithm章节中介绍的操作。

提醒:Bootstrapping分析结果中主要看路径系数及置信区间,R方、信效度等还是要在PLS-SEM algorithm分析结果中查看。

这一篇只是记录一些基本操作,具体数值/指标含义等我想再开其他帖子具体记录,希望与各位共同成长~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值