Stata:回归结果导出-parmest

全文阅读:https://www.lianxh.cn/news/d0690b484867b.html

目录

1. 引言

在使用 Stata 进行计量分析时,我们经常会通过 eststo 和 esttab 等命令将回归结果以表格形式导出。但在一些特定情形下,我们需要提取回归的系数、标准误、置信区间等信息。此时,采用外部命令 parmest 将会更加方便。

全文阅读:https://www.lianxh.cn/news/d0690b484867b.html

### 导出包含置信区间的回归分析结果Stata导出包含置信区间的回归分析结果可以通过多种方法实现。一种常用的方法是利用 `parmest` 外部命令来提取并保存所需的统计信息。 #### 使用 `parmest` 提取回归系数及其置信区间 安装 `parmest` 后,可以在执行回归之后立即运行此命令以创建一个新的数据集,其中包含了每个参数估计值的标准误差、t 统计量以及相应的置信限[^2]: ```stata ssc install parmest, replace regress y x1 x2 parmest, saving(myresults.dta, replace) ``` 上述代码会将当前回归结果存储在一个名为 myresults 的新文件中,并替换任何已存在的同名文件。该数据集中每一行代表一个被估测的参数,列则表示不同的属性如估计值(`estimate`)、标准误(`stdp`)、上下界(`min95`, `max95`)等。 #### 利用 `esttab` 设置输出格式 对于希望直接查看或进一步处理这些数值的情况,则可以考虑使用 `estout` 家族中的另一个工具——`esttab` 来定制化显示样式。通过指定选项 `b()` 和 `ci()`, 可控制小数精度及是否展示置信水平[^3]: ```stata sysuse auto, clear quietly regress price mpg weight length turn displacement gear_ratio foreign estimates store model_full esttab model_full, cells("b(fmt(a3)) ci(par([ , ]))") se star(* 0.1 ** 0.05 *** 0.01) label ``` 这段脚本首先加载了一个内置的数据集作为例子;接着静默地进行了多元线性回归并将结果储存起来以便后续调用;最后运用 `esttab` 函数构建了一张表格,不仅呈现了各预测因子对应的β权重(保留三位有效数字),还附带了其各自的95% CI范围(括号内分别给出下限和上限)。同时标注出了显著性的星号标记。 #### 结合图形展示边际效应变化趋势 当涉及到解释交互作用或者非线性关系时,绘制图表往往能更直观地传达信息。借助于 `_at` 参数设定具体关注点的位置,再配合 `marginsplot` 功能就能轻松完成此类任务[^5]。 ```stata margins, at(x=(-1.92(.1)1.315)) marginsplot ``` 这里假设 `x` 是感兴趣的连续型协变量之一,而给定的一系列离散值构成了对其进行评估的基础。生成后的图像能够清晰反映出随着输入特征改变所带来的响应均值差异走势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值