如何将Stata多元线性回归,结果输出到word

文章目录

 

前言

一、为什么要用Stata进行多元回归分析?

二、目标:将多个回归结果输出到一张表格

一、常用的命令语言:

1.打开数据

2.生成新变量

3.删除变量和观测值

4.作图

5.记录

三、如何把结果输出到Word

1.安装esttab

2.读入数据


前言

一、为什么要用Stata进行多元回归分析?

1.复杂度:使用Stata时,一次只能输入一个命令,也可以通过一个Stata程序一次输入多个命令。即使有错误,也比较容易发现和修改。

2.数据管理:Stata还有很多强大而简单的数据管理命令,可以让复杂的操作变得更简单,可以同时处理多个文件。

二、目标:将多个回归结果输出到一张表格

一、常用的命令语言:

1.打开数据

  • sysuse:理解为 系统打开,使用,调用
  • auto: 文件名,stats自带的
  • clear:因stata 每次只能打开一个文件,所以每次导入数据前要清除前一个;

一般使用

sysuse auto, clear
  • browse:br 浏览数据。横的变量,纵向为观测值;红色的是字符串-代表文本内容;蓝色的可能是虚拟变量;
  • describe:描述数据
  • Obs 观测值数量;
  • vars变量12个;
  • size大小;
  • str字符型数据;
  • int 整型数据;
  • float 浮点型数据;
  • Notes: 可以打开笔记-来源
  • summarize--sum :对所有的变量进行 观测值、均值、分析
  • Std Dev:标准偏差;Std.Err:标准误

标准差描述一组变量离散程度,是总体标准差的点估计。标准差越小,说明变量围绕均数分布越紧密,均数的代表性越高。标准差用来估计个体值范围。

标准误描述的是样本均数的离散程度,是均数的标准差;标准误越小,说明样本均数估计总体均数的可靠性越高;标准误用来估计总体均数置信区间

reg y x1 x2 ,beta#标准化系数
  • codebook 变量:可以具体看某一个变量的情况:
  • label标签
  • type类别
  • range范围
  • units单位
  • missing缺失值
  • freq频次
  •  br if missing(rep78)/ br if rep78 ==.:查看缺失值
  • list : 列示
  • summarize x, detail: 看具体内容
  • tabulate--tab: 制表、列成表格,汇总数据
  • if——条件命令
  • by——前置命令,确定其中一个变量,
  • sort:分类
  • t-test:T检验:已知样本标准差 未知总体标准差的情况下,检验样本差异的显著性(有没有区别)。H0原假设;Ha备择假设
  • ttest 要检验的变量,by (对象/组别)
  • variance-方差/差额/差异
  • correlate x y... :变量之间的相关性,相关性强弱
  • twoway -二维作图
  • twoway (scatter x y):只画一个散点图
  • twoway (scatter x y) (lfit x y ) :散点图和直线拟合图,在一张图上,几个括号就会有几个图
  • twoway(scatter x y)(lfit x y), by(something) 分类看图;根据不同的类别

2.生成新变量

  • keep x y ..:保留变量
  • generate-gen x=y,生成全新变量
  • gen model =substr(make , strpos(make , "")+1,.)
  • squrt(x)...—新系列 stata函数
  • replace替换:把model的前20个替换成了make
    replace model =make in 1/20  

    虚拟变量

xi reg y x1 x2 i:x x3 
  • 二分变量(参考项xi)
  • >3个选项的变量(东部0,西部1,中部2)

3.删除变量和观测值

  • clear:
  • drop:删除变量和观测值
  • drop x y:删除变量xy
  • drop in 1/20:删除前20个
  • keep:保留某变量,其他的就删除了

4.作图

  • twoway -二维作图
  • lfit: 直线拟合
  • qfit: 曲线拟合
  • twoway (scatter x y):只画一个散点图
  • twoway (scatter x y) (lfit x y ) :散点图和直线拟合图,在一张图上,几个括号就会有几个图
  • twoway(scatter x y)(lfit x y), by(something) 分类看图;根据不同的类别
  • title("") 命名
  • 然后是介绍一个拟合良好的新方式hhh
  • surface ///graph3d
  • help-install下载安装

5.记录

  • log using " " , replace text 修改保存的路径
  • log close 记录结束


三、如何把结果输出到Word

1.安装esttab

安装esttab命令,如果没有安装,可以通过ssc install esttab, replace来安装。

如果安装失败,就点击search,教程如下:

stata:esttab下载问题解决_esttab命令安装-CSDN博客

2.读入数据

可以使用esttaboutreg2等命令来格式化输出并将结果导出到表格中。

以下是一个使用esttab的例子:

sysuse auto, clear
esttab clear
esttab using zuoye2 rtf.se star(*0.05 **0.01 ***0.001) nol r2 replace 
(output written to zuoye2.rtf)

### 如何在Stata中将回归分析结果导出至Excel、Word或其他格式 在学术研究和论文撰写过程中,通常需要将统计软件中的回归分析结果整理成易于阅读的表格形式并导出到外部文件。以下是关于如何在Stata中实现这一目标的具体说明。 #### 使用`esttab`或`outreg2`命令导出回归结果 为了高效地将回归分析结果导出到外部文件,可以使用第三方命令如 `esttab` 或 `outreg2`。这两个工具能够帮助用户生成结构化的表格,并支持多种输出格式,包括 Excel 和 Word 文件。 - **安装必要的包** 如果尚未安装上述命令,可以通过以下方式安装它们: ```stata ssc install estout // 安装 esttab 所需的基础包 net install outreg2, from(http://www.ssc.wisc.edu/~hemken/Stata10/) replace ``` - **基本语法示例** 假设已经运行了一个多元线性回归模型,下面是如何将其结果保存为不同格式的例子: #### 导出到Excel 使用 `esttab` 将回归结果导出到 Excel 表格中: ```stata sysuse auto, clear // 加载内置数据集作为演示 regress price mpg weight // 运行简单回归 esttab using "results.xlsx", excel replace label title("Regression Results") se star(* 0.1 ** 0.05 *** 0.01) b(%9.3f) se(%9.3f) ``` 上述代码会创建一个名为 `results.xlsx` 的文件,其中包含了回归系数、标准误以及显著性标记等内容[^1]。 #### 导出Word文档 若要将相同的结果导出到 Microsoft Word 文档,则只需更改选项即可: ```stata esttab using "results.doc", word replace label title("Regression Results") se star(* 0.1 ** 0.05 *** 0.01) b(%9.3f) se(%9.3f) ``` 此外还可以通过调整参数来自定义样式,比如增加置信区间或者剔除某些变量列等[^2]。 #### 自动生成三线表用于正式出版物 对于希望遵循学术期刊要求的人来说,制作符合规范的三线表尤为重要。借助于专门设计的功能模块,可以直接生成满足此类需求的标准格式。 例如,在执行完一系列估计之后调用如下指令序列便可获得理想效果: ```stata // 设置全局宏以便统一控制字体大小和其他外观特性 global table_options /// cells(b(fmt(3)) se(par fmt(3))) /// 显示 beta 系数及其 SEs (括号内表示法),保留三位小数位精度 stats(N r2_a, fmt(0 3) labels(`"Observations"' `"Adjusted R-squared"')) /// 添加样本量与调整后的R方值信息 collabels(none) varlabels(_cons Constant) nonumbers noobs nomtitle booktabs // 应用设定好的模板渲染最终版本 esttab * using results.tex, $table_options replace ``` 这里选择了 LaTeX 输出模式 (`tex`) ,因为它非常适合处理复杂的排版任务;当然也完全可以切换回之前提到过的其他媒介载体类型。 #### 利用Python进一步加工数据 尽管Stata提供了强大的功能来管理和展示统计数据,但在特定场景下可能仍有必要引入额外的技术手段——譬如当面对超大规模的数据集合时,单纯依靠单一平台未必总能达成最佳效率。此时不妨考虑结合 Python 来增强整个工作流的表现力。 假设我们已经有了由前面步骤产生的 CSV 版本中间产物,那么就可以轻松加载它进入 Pandas DataFrame 并实施更深层次的操作了: ```python import pandas as pd df = pd.read_csv('output.csv') # 读取从 Stata 中提取出来的原始资料 styled_df = df.style.format(precision=3).set_table_styles([ {'selector': 'th', 'props': [('text-align', 'center')]}, {'selector': 'td', 'props': [('padding-left', '8px'), ('padding-right', '8px')]} ]) styled_df.to_excel('final_results.xlsx', engine='openpyxl') ``` 此脚本片段不仅实现了数值修整而且优化了视觉呈现质量,从而使得整体更加专业美观[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值