全文阅读:https://www.lianxh.cn/news/2adcb04d9db8e.html
目录
- 0. 简介
- 1. 分位数回归基本命令:qreg
- 2. 分位数回归绘图命令: grqreg
- 3. 广义分位数回归 (generalized quantile regression) 命令: genqreg
- 4. 面板数据分位数回归命令:qregpd
- 4. 非条件分位数固定效应模型回归命令: xtrifreg
0. 简介
最小二乘法 (OLS) 是在实证中最常用到的回归方法。标准的最小二乘线性回归,关注解释变量 x 对被解释变量 y 的 条件均值 的影响。OLS 回归关注的是因变量的条件均值函数。然而,实证中,研究者可能对 分布的其它重要分位数感兴趣。例如,劳动经济学家研究性别收入差距不平等问题时,若想探究高收入女性是否更难获得升职机会,就需要更关注女性群体收入的 90% 分位数水平。
与 OLS 不同,分位数回归估计的是解释变量 x 与被解释变量 y 的 分位数 之间线性关系。OLS 回归以残差平方最小化 作为目标,中位数回归则目标最小化离差绝对值 。对于分位数回归,其目标为最小化非对称性绝对值残值。
以 表示分位数水平,分位数回归估计量 最小化目标函数
相较于 OLS, 分位数回归的优点主要是:更全面描述解释变量 x 和被解释变量 y 的关系。实际上,在不同分位数上,因为解释变量 x 对被解释变量 y 可能影响不同,因此分位数回归系数可能和 OLS 的回归系数不同。
全文阅读:https://www.lianxh.cn/news/2adcb04d9db8e.html