分位数回归及Stata实现

本文介绍分位数回归的基本概念及应用,包括分位数回归与最小二乘法的区别,以及如何使用不同的Stata命令进行分位数回归分析。通过实际案例,展示分位数回归在不同场景下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/2adcb04d9db8e.html

目录

0. 简介

最小二乘法 (OLS) 是在实证中最常用到的回归方法。标准的最小二乘线性回归,关注解释变量 x 对被解释变量 y 的 条件均值  的影响。OLS 回归关注的是因变量的条件均值函数。然而,实证中,研究者可能对  分布的其它重要分位数感兴趣。例如,劳动经济学家研究性别收入差距不平等问题时,若想探究高收入女性是否更难获得升职机会,就需要更关注女性群体收入的 90% 分位数水平。

与 OLS 不同,分位数回归估计的是解释变量 x 与被解释变量 y 的 分位数 之间线性关系。OLS 回归以残差平方最小化  作为目标,中位数回归则目标最小化离差绝对值 。对于分位数回归,其目标为最小化非对称性绝对值残值。

以  表示分位数水平,分位数回归估计量  最小化目标函数

相较于 OLS, 分位数回归的优点主要是:更全面描述解释变量 x 和被解释变量 y 的关系。实际上,在不同分位数上,因为解释变量 x 对被解释变量 y 可能影响不同,因此分位数回归系数可能和 OLS 的回归系数不同。

全文阅读:https://www.lianxh.cn/news/2adcb04d9db8e.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值