Stata:空间双重差分模型(SpatialDID)-xsmle

空间双重差分模型(SpatialDID)是经济学研究中处理空间相关性和内生性问题的有效方法,尤其适用于分析污染排放、疾病传播等领域。该模型结合了空间面板数据的特性,通过Stata的xsmle命令进行实证分析。本文详细介绍了SpatialDID的模型设定、比较和Stata操作步骤,并提供了具体案例,帮助读者理解并应用这一模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:Stata:空间双重差分模型(Spatial DID)-xsmle| 连享会主页

目录

1. 模型提出

在对污染排放、疾病传播、房价涨跌、区域犯罪率等研究中,个体之间的空间相关性逐渐引起学者们的关注。以空气污染为例,由于大气的流动性,污染较为严重的地区会对其邻近地区的空气质量造成影响;相反,某地积极有效地实行减排措施,也可能被邻近地区效仿学习,进而实现区域环境优化。

在同时考虑上述空间相关性和内生性问题的基础上,空间双重差分模型 (Spatial Difference in Difference Model,SDID) 应运而生。该模型主要用于评估变量间存在空间依赖性的政策冲击效果。

全文阅读:Stata:空间双重差分模型(Spatial DID)-xsmle| 连享会主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值