因果推断:混杂因素敏感性分析实操(下)-tesensitivity

本文探讨了因果推断中混杂因素的重要性和分析方法,通过实操案例解析如何评估无混淆性假设对研究结果的敏感性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:因果推断:混杂因素敏感性分析实操(下)-tesensitivity| 连享会主页

1. 缘起

在因果推断中一个标准的问题,是识别和估计某个处理变量  对结果变量  的影响。为了识别这样的影响,一个常见的假设就是无混淆因素假设,也称作依可测变量选择、条件独立性、可忽略性或者外生选择性假设。这一假设很难被推翻,也很难被检验,即数据本身并不能告诉我们无混淆性因素假设是对还是错。

尽管如此,实证研究者们还是想知道这一假设在实证分析中究竟有多么重要,或者说结论对于无混淆性因素假设有多么敏感?

全文阅读:因果推断:混杂因素敏感性分析实操(下)-tesensitivity| 连享会主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值